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ABSTRACT
The equine microbiome can change in response to dietary alteration
and may play a role in insulin dysregulation. The aim of this study was
to determine the effect of adding pasture to a hay diet on the faecal
bacterial microbiome of both healthy and insulin-dysregulated ponies.
Faecal samples were collected from 16 ponies before and after dietary
change to enable bacterial 16S rRNA sequencing of the V3–V4
region. The dominant phyla in all samples were the Firmicutes and
Bacteroidetes. The evenness of the bacterial populations decreased
after grazing pasture, and when a pony was moderately insulin
dysregulated (P=0.001). Evenness scores negatively correlated with
post-prandial glucagon-like peptide-1 concentration after a hay-only
diet (r²=−0.7, P=0.001). A change in diet explained 3% of faecal
microbiome variability. We conclude that metabolically healthy ponies
have greater microbial stability when challenged with a subtle dietary
change, compared with moderately insulin-dysregulated ponies.

KEY WORDS: 16S rRNA, Hindgut, Horse, Glucagon-like peptide-1,
Equine metabolic syndrome, Endocrine

INTRODUCTION
The equine gastrointestinal microbiome, like that of other mammalian
species, comprises a large and complex assortment of bacteria, viruses,
archaea, protozoa and fungi that is integral to the overall health of the
horse (Dicks et al., 2014). The gastrointestinal microbiome influences
metabolism, endocrine signalling and the immune system in humans
(Nicholson et al., 2012), and in horses has been implicated in several
diseases including laminitis (Milinovich et al., 2010) and equine
metabolic syndrome (EMS) (Elzinga et al., 2016).
The core microbiota of both the foregut and hindgut have been

described in horses. The rapid transit time of ingesta and exposure to
environmental bacteria results in a fluctuating foregut microbiome
often dominated by Proteobacteria (Ericsson et al., 2016). In
comparison, the hindgut microbiome appears to be more stable, and
is dominated by the phyla Bacteroidetes and Firmicutes, with
Fibrobacteres, Spirochaetes and Verrucomicrobia also abundant
(Fliegerova et al., 2016; St-Pierre et al., 2013; Desrousseaux et al.,
2012; Stewart et al., 2018; Shepherd et al., 2012; O’Donnell et al.,
2013; Proudman et al., 2015). The faecal microbiome has been
shown to represent the populations of the distal hindgut (Dougal
et al., 2012; Costa et al., 2015) and faecal collection is a valid, non-
invasive sampling technique provided the samples are collected

immediately after defaecation and stored appropriately (Beckers
et al., 2017; Fliegerova et al., 2016).

The hindgut fermentation capacity of horses is utilised to extract
short-chain volatile fatty acids from previously undigested dietary
components, such as fibre (Al Jassim and Andrews, 2009). The
hindgut microbiota of horses can respond relatively quickly to
changes in diet (Fernandes et al., 2014), and is highly variable, both
within and between individuals (Blackmore et al., 2013). For
example, increasing the starch in a horse’s diet changes the
composition of the faecal microbiome, with increases in amylolytic
bacteria, gram-positive cocci and lactobacilli (Harlow et al., 2016).
Altering the diet from a hand-fed forage (alfalfa) and grain mix to a
pasture-based diet also changed (within 4 days) the composition of
the faecal microbiome (Fernandes et al., 2014). Horses kept solely
on pasture also experienced fluctuations in their faecal microbiome,
which was possibly related to changes in the environment, season or
pasture composition (Salem et al., 2018). A common dietary change
for horses is the transition from a hay-only diet to a combination of
hay and pasture, when animals are allowed to graze. However, the
effect of the addition of pasture to a horse’s diet on the faecal
microbiome has not been examined.

In humans and mice, perturbations of the faecal microbiome have
also been associated with insulin secretion and sensitivity
(Naderpoor et al., 2019), incretin action (Lee et al., 2018; Hwang
et al., 2015; Xu et al., 2019) and obesity (Ley et al., 2005; Beaumont
et al., 2016). It has been reported that horses with EMS have lower
microbial diversity than healthy horses, but with a greater
abundance of Verrucomicrobiota subdivision 5 (now classified as
the separate phyla Kiritimatiellaeota) (Elzinga et al., 2016; Spring
et al., 2016). However, other reports suggest that obese horses have
higher microbial diversity (Biddle et al., 2018; Morrison et al.,
2018), which is difficult to reconcile, as many horses with EMS are
also obese. The impact of dietary change on the faecal microbiome
of horses with EMS is currently unknown. Identifying the relative
proportions of key commensal bacteria in the hindgut may provide
an insight into the efficiency of dietary energy extraction by horses
and ponies with EMS.

This study aimed to describe the effect of a common dietary
change (the addition of pasture) on the faecal bacterial microbiome of
healthy ponies, and ponies with EMS. A secondary objective was to
describe differences in the bacterial faecal microbiome between
ponies with different degrees of insulin regulation, ranging from
normal to severe dysregulation. To further investigate this secondary
objective, we determined whether any metabolic parameters could be
associated with differences in the microbiome.

MATERIALS AND METHODS
Subjects and study design
Sixteen mixed-breed ponies (6 Shetland/Shetland cross-breed,
3 Welsh/Welsh cross-breed, 7 other breeds) were included in thisReceived 25 November 2019; Accepted 12 February 2020
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study, which was performed in South East Queensland, Australia.
Following a veterinary examination, which included haematological
and biochemical analyses, each pony was considered healthy,
except for the presence of clinical signs of EMS in 11 individuals.
The diagnosis of EMS was based on evidence of regional adiposity
and insulin dysregulation. The presence of insulin dysregulation
was confirmed with a standard oral glucose test (OGT) using
1 g kg−1 body mass (Mb) dextrose powder added to a small meal
(Bertin and de Laat, 2017). Ethical approval for the study was
granted by the University of Queensland (QUT/SVS/316/16) and
Queensland University of Technology (1600000877), and the study
was conducted according to the relevant national guidelines and
state regulations which govern these committees.
The ponies were classified by their (2 h) post-prandial serum

insulin response to the OGT as normally insulin regulated ([insulin]
<60 μIU ml−1; NIR), moderately insulin dysregulated ([insulin]
60–279 μIU ml−1; MID) or severely insulin dysregulated
([insulin] ≥280 μIU ml−1; SID), as previously described (Fitzgerald
et al., 2019b). The basal adrenocorticotrophic hormone concentration
for each pony was measured to exclude pituitary pars intermedia
dysfunction, using a seasonally adjusted diagnostic cut-off value, as
previously described (Secombe et al., 2017; Fitzgerald et al., 2019b).
Serum aspartate aminotransferase, alkaline phosphatase, gamma
glutamyltransferase and total bilirubinweremeasured in acommercial
laboratory, to assess liver function in each pony 1 week prior to the
study commencing, as liver disease can result in gut microbial
dysbiosis (Tripathi et al., 2018).
During the study, the ponies were housed individually in pasture-

free (dirt) yards for an initial 10 day period and fed at 2% Mb (as fed)
with prime alfalfa hay, plus a commercial low-sugar vitamin and
mineral pellet (Kentucky Equine Research,Mulgrave, VIC, Australia).
In the next phase, the ponies were allowed to graze pasture in
individual, adjacent strips (4.2 m×21 m) for 4 h each day (08:00 h–
12:00 h), for 5 consecutive days. In the evening, the ponies received a
meal of the same alfalfa hay, at 0.7%Mb (as fed). It was estimated that
the ponies would consume up to 1.3% of theirMb during the morning
grazing period (Longland et al., 2016); thus, the total amount of feed
available was judged to be similar for the two study periods. To
estimate the total dietary intake, the total faecal output was measured,
with all faeces collected for the initial 3 days of each period. The daily
faecal mass was weighed, subsampled, dried and re-weighed for each
24 h period. Total faecal output was calculated by determining: total
wet mass × dry subsample mass/wet subsample mass.

Samples
On the last day of each diet period, a whole freshly passed
uncontaminated faecal ball was collected from each pony. The faecal
ball was collected with a gloved hand from the top of the faecal pile to
minimise skin and environmental contamination. The samples were
placed in sterile 50 ml tubes, and immediately stored at −20°C.
The prime alfalfa hay fed during the study was sourced from a single

batch. Hay samples were collected from 12 randomly sampled bales
using a bale corer and pooled prior to analysis. The paddock grazed
during the study consisted of couch, rye grass and clover. Pasture
samples were collected at 10:00 h on the day prior to grazing. Six
sampling locations were selected at random within a diagonal pattern
across thewhole paddock, by tossing a 0.25 m2 square frame. The grass
was cut 1 cm from the ground, pooled and immediately microwaved to
prevent further metabolism of plant carbohydrates and to facilitate dry
matter measurements. Fodder samples were sent to a commercial
laboratory (DPI, Wagga Wagga, NSW, Australia), accredited by the
National Association of Testing Authorities, for further analysis.

Post-prandial blood samples (6 ml; for association of the
microbiome with metabolic parameters) were collected by jugular
venepuncture at 10:00 h (ponies were fed at 08:00 h) on the same
morning as faecal samples were collected. The blood was divided
equally between a clot activator vacutainer tube and an EDTA tube
(Becton Dickinson, Franklin Lakes, NJ, USA). The clot activator
tube was allowed to stand for 30 min at ambient temperature prior to
centrifugation (10 min at 1500 g) and separation of serum. The
EDTA tube was placed on ice for 10 min prior to centrifugation
(10 min at 1500 g) and separation of plasma. Samples were
immediately frozen at −20°C, then transferred to −80°C for storage
within 72 h. Serum insulin concentrations were measured at a
commercial laboratory (Vetpath, Ascot, WA, Australia) using an
Immulite 2000 XPi (Siemens Healthcare, Brisbane, QLD, Australia).
Plasma aGLP-1wasmeasured using a commercially available ELISA
(Millipore, Abacus ALS, Meadowbrook, QLD, Australia) previously
validated for use in horses (de Laat et al., 2016).

DNA extraction and 16S amplicon sequencing
Genomic DNAwas extracted from all faecal samples. A 0.25 g sub-
sample was taken from the centre of the faecal ball with sterile
forceps and the DNA extracted using the Power Fecal Kit (Qiagen,
Chadstone, VIC, Australia) according to the manufacturer’s
protocol. Extracted DNA was quantified using a Nanodrop
spectrophotometer (Thermo Fisher, Scoresby, VIC, Australia),
and diluted to 5 ng μl−1. PCR was used to amplify the V3–V4
region of the bacterial 16S rRNA gene following the 16S
metagenomics sequencing library preparation protocol (Illumina,
Scoresby, VIC, Australia). Briefly, 25 μl PCR reactions were
performed, consisting of 5 ng μl−1 template, 5 μl of 1 μmol l−1

forward primer, 5 μl of 1 μmol l−1 reverse primer and 12.5 μl of
2×KAPAHiFi HotStart ReadyMix (Sigma-Aldrich, Sydney, NSW,
Australia). The primer sequences used in this study have been
published previously (Klindworth et al., 2013): 16S rRNA
Amplicon PCR Forward Primer S-D-Bact-0341-b-S-17: 5′-TCG-
TCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGG-
NGGCWGCAG-3′; 16S Amplicon PCR Reverse Primer S-D-Bact-
0785-a-A-21: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAG-
AGACAGGACTACHVGGGTATCTAATCC-3′.

The PCR protocol consisted of an initial denaturation step at 95°C
for 3 min, 25 cycles of denaturation at 95°C for 30 s, annealing at
55°C for 30 s and extension at 72°C for 30 s, followed by a final
extension at 72°C for 5 min, then held at 4°C. PCR clean-up was
performed using JetSeq Clean beads (20 μl per sample; Bioline,
Eveleigh, NSW, Australia) and 80% ethanol. The PCR product was
then resuspended in 52.5 μl of 10 mmol l−1 Tris (pH 8.5). Samples
were indexed using Nextera XT Index primers (Illumina). A 50 μl
reaction consisted of 5 μl PCR product, 5 μl primer 1 (Illumina), 5 μl
primer 2 (Illumina), 25 μl 2×KAPA HiFi HotStart Ready Mix
(Sigma-Aldrich) and 10 μl PCR-grade water. The PCR protocol
consisted of an initial denaturation of 95°C for 3 min, 8 cycles of
denaturation at 95°C for 30 s, annealing at 55°C for 30 s and
extension at 72°C for 30 s, followed by a final extension at 72°C for
5 min, then held at 4°C. Another clean-up step was performed using
the JetSeq Clean beads (Bioline), as described above. Libraries were
quantified and normalised to 45 nmol l−1, then pooled for sequencing
on a MiSeq (Illumina) using 600 cycle sequencing chemistry.

Data analysis
The pony morphometric, faecal and hormone data analyses were
performed in SigmaPlot v.13 with a significance level of P<0.05
accepted. Sample sizewas determined using a priori power analyses

2

RESEARCH ARTICLE Journal of Experimental Biology (2020) 223, jeb219154. doi:10.1242/jeb.219154

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



(α<0.05, β=0.8) to enable comparisons between metabolic groups
using previous data. Normality of the data distribution was tested
using the Shapiro–Wilk test. The faecal data were analysed using the
Wilcoxon signed rank test. The ponies’ signalment and blood
measurements were analysed using a one-way ANOVA test when
the data were normally distributed, and the Kruskal–Wallis one-way
ANOVA on ranks when the data were not.
Quality control via read trimming (forward reads were trimmed at

0–20 bp and truncated at 280 bp, reverse reads were trimmed at
0–20 bp and truncated at 260 bp) and chimaera identification were
performed on the 16S rRNA sequences using the Quantitative
Insights Into Microbial Ecology (QIIME2) pipeline and DADA2
(Callahan et al., 2016 preprint). Sequence alignments and
phylogenetic trees were constructed using MAFFT and FastTree,
respectively. Operational taxonomic units (OTUs) were defined at
97% sequence identity. Alpha rarefaction plots were used to
determine sequence sampling depth, while maintaining maximum
representation of OTUs in the samples. Rarefied data were used to
estimate alpha and beta diversity only. Phylogenetic assignment of
the OTUs was performed against the SILVA database, release 132.
Alpha diversity measurements (measurements of within-sample

population diversity) included Shannon’s diversity index (Shannon,
1948), observed OTUs, Faith’s phylogenetic diversity (Faith, 1992)
and Pielou’s evenness (Pielou, 1966). Alpha diversity measurements
were analysed using a two-way repeated measures ANOVA, where
pony was the repeated factor, and diet and insulin regulation group
were fixed factors. Correlations were assessed using Pearson’s
correlation coefficient. Non-metric multidimensional scaling
(NMDS) and hierarchical clustering of bacterial phyla relative
abundance values were based upon Bray–Curtis dissimilarity and
performed using the VEGAN package (Dixon, 2003) within R 3.2.2.
Beta diversity measurements (measurements of between-sample
diversity and stability) included Jaccard distance, Bray–Curtis
distance, unweighted UniFrac distance and weighted UniFrac
distance. The dissimilarity distance between diets (within pony)
was analysed using a one-way ANOVA to assess differences between
insulin regulation groups.
Gneiss differential abundance modelling was applied via QIIME2

by creating a hierarchical correlation clustering tree (de Laat et al.,
2019), which clusters co-occurring OTUs together into niche groups.
These clusters were compared between groups of samples (such as
insulin groups) and ratios of OTU counts (balances) were calculated.
A difference in a balance between clusters was used to show that
OTUs within the cluster were differentially abundant between the
sample groups. Calculated balances transformed the microbial
abundance data and were normally distributed (Morton et al., 2017).
A linear regression model was applied to the balances, incorporating
individual pony identification, diet and insulin regulation group.
OTUs present at counts below 10 were filtered out prior to model
construction. Additional differential abundance analysis was
performed using Phyloseq (Callahan et al., 2016 preprint;
McMurdie and Holmes, 2013). OTU counts were transformed to
proportions of reads within the sample group.

RESULTS
Samples and animals
The percentage dry matter of the hay was more than double that of
the pasture (Table S1), and so total faecal dry matter was greater
when ponies were fed hay only, compared with when they were
grazing pasture with an evening hay meal (Fig. 1; Z=3.5, P=0.001).
All ponies maintained a normal appetite throughout the study
period, and there was no evidence of gastrointestinal upset as a

consequence of the dietary change. Liver function was normal in all
individuals, with the only biochemical change of note being that
basal total bilirubin concentration was lower in the SID group than
in the NIR group, although still within the normal reference
range supplied by the laboratory (Table 1). The post-prandial
concentration of the incretin hormone active glucagon-like peptide-
1 (aGLP-1) was elevated in MID ponies compared with NIR ponies
when on the hay diet. On the pasture diet, both the MID and SID
groups had a greater aGLP-1 concentration than that of the NIR
ponies (Table 1).

Characterisation of the microbiome in the cohort
Overall, 24,133 reads met our quality threshold. The mean 16S
rRNA sequence count was 141,247, with a range of 52,936 to
886,568 reads per sample. Rarefaction curves based on observed
OTUs and Shannon’s and Faith’s diversity were used to establish
that 44,000 reads per sample resulted in no loss of diversity (Fig. S1)
so this number was used for diversity measurements. The DADA2
algorithm identified 16,492 OTUs with just 37 conserved in all
32 samples.

The faecal microbiome from all ponies was dominated by the
phyla Firmicutes (35.5–55.7%) and Bacteroidetes (29.1–40.6%;
Fig. 2). Phyla that were less abundant but present in all samples
included Spirochaetes (2–15.8%), Kiritimatiellaeota (0.7–7.2%)
and Fibrobacteres (0.2–7.6%). Thirty-seven bacterial classes were
identified. Those present at >1% in at least one sample included
Clostridia, Bacteroidia, Spirochaetia, Kiritimatiellae, Fibrobacteria,
Negativicutes, Erysipelotrichia, Saccharimonadia, Melainabacteria,
Verrucomicrobiae, Mollicutes, Synergistia, Alphaproteobacteria,
Planctomycetacia and Bacilli. The majority of OTUswere present in
low abundance, with a median of 19, a mean of 274 and a maximum
of 82,519 occurrences over all 32 samples.

Diversity
Alpha diversity
The diversity of the faecal microbiome decreased when ponies were
fed the combined pasture plus hay diet (Shannon’s index, Holm–
Šidák post hoc test, t=3.5, P=0.004; Table 2) compared with hay
only. In particular, the proportion and diversity of the order
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Fig. 1. The total faecal output from 16 ponies on two different diets.
Median (±interquartile range, IQR) total daily faecal output over a 3 day period
was greater on a hay-only diet (H) than on a pasture–hay diet (P; P<0.001).
DM, dry matter.
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Fibrobacterales decreased with pasture consumption (Fig. S2). The
evenness of the bacterial populations decreased when ponies were
on the combined pasture plus hay diet. This observation was most
striking in theMID pony group (evenness, t>2.9, P<0.001; Table 2).
The number of OTUs and phylogenetic diversity were not different
between diets or pony groups, indicating that similar taxa were
found in the two dietary treatments (Table 2).
Because of the significant effect of both diet and insulin

regulation on bacterial evenness, we tested for a relationship

between Pielou’s evenness score with two known markers of
equine insulin dysregulation: post-prandial serum insulin and
aGLP-1 concentration (Bamford et al., 2015). Evenness was
negatively correlated with post-prandial aGLP-1 concentration
on the hay diet, but no significant relationship was found on
the combined pasture plus hay diet (Fig. 3). No association
was evident between post-prandial insulin concentration and
population evenness on either diet (hay, r2=−0.2, P=0.4; pasture–
hay, r2=−0.1, P=0.7).

Table 1. Enteroinsular and liver function parameters of 16 ponies undergoing dietary change

Variable Unit NIR MID SID P-value

N Count 5 6 5 –

Age Years 15.2±7.6 11.5±6 11.8±5 0.6
Baseline AST U l−1 275 [156] 331 [131] 306 [73] 0.7
Baseline alkaline phosphatase U l−1 243±76 213±71 185±78 0.5
Baseline GGT U l−1 21.8±11 17.3±6 21±7 0.6
Baseline total bilirubin μmol l−1 24±6.6a 18.7±4a,b 14.5±4b 0.04
Post-prandial aGLP-1 hay pmol l−1 8.3 [3.8]a 14.5 [9.0]b 8.8 [2.9]a,b 0.01
Post-prandial aGLP-1 pasture pmol l−1 2.3±2a 13.1±5.9b 10.1±4.0b 0.004
Post-prandial insulin hay μIU ml−1 111 [157]a 210 [128]a 430 [154]b 0.001
Post-prandial insulin pasture μIU ml−1 33 [20]a 137 [162]b 444 [160]b 0.001

Data are reported as means±s.d. or medians [IQR]. The ponies were grouped by their insulin response to an oral glucose test as normally insulin regulated (NIR),
moderately insulin dysregulated (MID) or severely insulin dysregulated (SID). aGLP-1, active glucagon-like peptide-1; AST, aspartate aminotransferase; GGT,
gamma glutamyltransferase. Different superscript letters indicate a significant difference between insulin regulation groups; significant P-values are in bold.
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Fig. 2. Relative abundance estimates of phyla in faecal samples from 16 ponies. The ponies received two diets (H, hay; P, pasture plus hay) and were
classified according to their level of insulin regulation (NIR, normal insulin regulation; MID, moderately insulin dysregulated; SID, severely insulin dysregulated).
Clustering shows broad relationships between samples. Diet influences clusters only at the tips. Circle size and colour show the relative abundance of phyla in
each sample.
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Beta diversity
None of the beta diversity indices that measured the dissimilarity
between the hay diet and the combined pasture–hay diet differed
between pony groups (Table 3, Fig. 4A). The microbial population
appeared to be more dissimilar after a pasture–hay diet, whereas the
population clustered more closely after a diet of hay only (Fig. 4B).

Differential abundance: gneiss clustering and regression
Multivariate linear regression showed that the insulin regulation
status of each pony accounted for more variation within the faecal
microbiome than that typically observed between hosts (Table S2).
A subtle change in diet contributed relatively little to faecal
microbiome variation (3%). When pony, diet and insulin regulation
status were defined within the regression model, 18.1% of variation
within the faecal microbiome was explained (Table S2).
Two niche groups (y2 and y23) were found to separate samples

by diet as a result of a decrease in abundance of taxa on pasture
relative to hay (Fig. 5). Y2 taxa were also increased in abundance in
the MID cohort relative to NIR and SID. The y2 balance was near
the root of the hierarchical clustering tree (de Laat et al., 2019) and
reflected relative abundance changes to 7714 OTUs (Fig. 6).

Several bacterial taxa were more abundant in the MID group
relative to the SID and NIR groups (P=0.0006; Fig. 6A,B). The
greatest relative abundance increase was in the phylum Firmicutes
(to 3548 unique taxa). Niche y10 exhibited decreased abundance in
taxa in both MID and SID groups relative to ponies with normal
insulin regulation (P=0.006; Fig. 6C). Samples from MID ponies
were separated by niche y12, in which taxa were more abundant
relative to the other groups (P=0.007; Fig. 5).

DISCUSSION
This study demonstrated that changes to the faecal microbiome occur
in ponies following a subtle change in diet, and that ponies with
different insulin regulatory capabilities have different faecalmicrobial
composition and responddifferently to diet change.Associations have
been made between the gastrointestinal microbiome and endocrine
function in both humans (Naderpoor et al., 2019) and mouse models
of disease (Hwang et al., 2015; Raza et al., 2017), and this
microbiome–endocrine axis also appears to be present in the horse.
A few studies have begun to explore the relationship between
metabolic derangements and the gastrointestinal microbiome in
horses, although the small number of studies undertaken and the use

Table 2. Mean (±s.d.) alpha diversity of the faceal microbiome in NIR, MID and SID ponies when consuming a hay-only diet or a combined
pasture–hay diet

Alpha Diet NIR MID SID

P-value

SI Diet Diet×SI

Shannon’s index H 9.0±0.3a 8.7±0.3a 8.9±0.3a 0.232 0.004 0.243
P 8.8±0.1b 8.5±0.5b 8.4±0.3b

Observed OTUs H 1404±336 1468±1678 1500±345 0.652 0.629 0.41
P 1382±186 1575±511 1260±396

Faith’s PD H 88.2±18.8 94.3±7.1 87.0±9.5 0.594 0.493 0.772
P 98.0±16.7 97.5±27.9 86.2±23.5

Evenness H 0.863±0.009a 0.825±0.02b 0.852±0.01a <0.001 <0.001 0.737
P 0.844±0.004c 0.800±0.03d 0.822±0.01c

NIR, normal insulin regulation; MID, moderately insulin dysregulated; SID, severely insulin dysregulated; SI, insulin responsiveness group; OTU, operational
taxonomic unit; PD, phylogenetic diversity; H, hay-only diet; P, combined pasture–hay diet. Different superscript letters indicate a significant difference between
insulin regulation groups; significant P-values are in bold.
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Fig. 3. Association between Pielou’s evenness alpha diversity measurement and post-prandial active glucagon-like peptide-1 (aGLP-1) concentration.
Evenness was negatively correlated with post-prandial aGLP-1 concentration on a hay-only diet in ponies (A), but not when ponies ate a combined
pasture–hay diet (B).
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of different methodologies has prevented a clear consensus
(Milinovich et al., 2008; Steelman et al., 2012; Elzinga et al., 2016;
Biddle et al., 2018). The current study used a cohort of ponies housed
on the same property and maintained under controlled conditions, in
an effort to minimise variability arising from non-standardised
feeding practices. The results showed that whereas minimal changes
to the overall microbial populations occurred between diets (beta
diversity), the abundance of certain taxawas higherwhen ponieswere
fed a hay-only diet. Further, a difference associated with insulin
regulation status was evident, with MID ponies possessing bacterial
populations that were less even than those of both the SID and NIR
pony groups on a hay-only diet.
Equine microbiomes are dominated by key commensal bacteria,

and broad taxonomic groups are resilient in the face of dietary
change in healthy horses. Abundance differences are usually
observed at the genus or species level (Steelman et al., 2012; Dougal
et al., 2017). The dominant phyla of the equine faecal microbiome
are the Firmicutes and Bacteroidetes (Stewart et al., 2018; Salem
et al., 2018; O’Donnell et al., 2013; Proudman et al., 2015), and this
was further confirmed in this study. While the faecal microbial
population remains stable in the short term when there are no
disturbances to a pony’s diet or routine (Blackmore et al., 2013),
variation associated with seasonality and change in forage type
occurred over a 12 month period (Salem et al., 2018). In addition,
changing from a forage concentrate to a pasture-based diet altered
faecal microbiome composition within 4 days (Fernandes et al.,
2014). The diet change in the current study was subtle, with ponies
still receiving an evening meal of the same hay that was fed during

the hay-only period in addition to the incorporation of pasture
during a 4 h grazing period over 5 days. Despite this, diet was
predicted to account for 3% of variation, and changes were observed
in the diversity (Shannon’s index) and evenness of the faecal
microbial populations due to the change in diet over a similar time
frame to the Fernandes et al. (2014) study, as well as a decrease in
faecal output when grazing. The greater dry matter of the hay could
have contributed to reduced faecal output on pasture, as well as to
changes in the microbiome, such as the increase in Fibrobacteres,
which also occurs in ruminants when fed greater dry matter content
(Zhang et al., 2017). As the field component of the study was
completed in less than 1 month, season was unlikely to be a major
contributing factor to microbial variation (Salem et al., 2018).

Access to fresh grass resulted in a reduction in the diversity and
uniformity of the bacterial populations, which confirms that the
introduction of new forage types affects faecal microbial
composition. A reduction in uniformity could be associated with
the consumption of environmental microbes, such as those in soil,
or the selection for and against niche groups in response to the new
dietary component. Two niche groups were observed to decrease in
abundance on the combined pasture plus hay diet relative to the hay-
only diet. A previous study demonstrated that the introduction
of haylage increased Fibrobacter populations (Salem et al., 2018),
while the current study found a decreased proportion and
diversity of some taxa in the order Fibrobacterales, and fewer
Verrucomicrobia, during pasture consumption. A reduction in
bacterial diversity might be an adaptive response during periods of
dietary change and relate to characteristics of the forage, such as dry
matter content as discussed above, but studies that specifically
investigate the reasons underlying adaptation of the microbiota to
forage type would be valuable.

With higher Pielou’s evenness scores, the NIR group exhibited
greater stability of taxa and metabolically healthy ponies may
exhibit stable microbiomes that vary considerably from each other
and maintain stability. It also appears that with more severe insulin
dysregulation (SID group), the taxa can regain stability, although
potentially with differences in diversity from metabolically healthy
ponies. The reasons for this recovery in the evenness of taxa in more
severely insulin-dysregulated animals are not known, and studies

Table 3. Mean (±s.d.) beta diversity for the dissimilarity between the hay
and combined pasture–hay diet in NIR, MID and SID ponies

Beta NIR MID SID P-value

Jaccard 0.713±0.03 0.664±0.03 0.671±0.06 0.16
Bray–Curtis 0.619±0.04 0.541±0.04 0.574±0.07 0.07
Unweighted UniFrac 0.525±0.04 0.49±0.07 0.462±0.06 0.25
Weighted UniFrac 0.226±0.01 0.236±0.03 0.237±0.05 0.88

NIR, normal insulin regulation; MID, moderately insulin dysregulated; SID,
severely insulin dysregulated.
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Fig. 4. Non-metric multidimensional scaling (NMDS) plots calculated from the Bray–Curtis dissimilarity data. The clusters show the effect of insulin
regulation (A) and diet (B).
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that specifically examine this phenomenon are warranted. Although
Bray–Curtis dissimilarity did not indicate changes in the abundance
of taxa within the groups, the marginal P-value of 0.07 may indicate
that further investigation of the variation in taxa abundance between
metabolically healthy and dysregulated animals is justified. These
data might be relevant to the selection of donors for faecal
microbiota transplantation when transfaunation is being considered
as an option for treating chronic diarrhoea in horses (Mullen et al.,
2018). Host selection might influence the success of transfaunation,
and the current findings suggest that the use of metabolically
healthy donors is preferable.
A lower Pielou’s evenness score in the MID group suggests less-

even counts of OTUs, and microbiomes of moderately insulin-
dysregulated ponies may be prone to shifts in rare taxa after diet
changes. The abundance of both Bacteroidetes and Firmicutes was
greater in the MID ponies, which also displayed a higher aGLP-1
concentration and lower community evenness. These measures
strongly correlated throughout the whole cohort, indicating that
greater abundance of key taxa in these phyla in the faecal microbiome

may be involved in insulin dysregulation in a subset of ponies with
EMS. We have found that the positive linear relationship between
aGLP-1 (which augments insulin secretion) and insulin is lost during
severe insulin dysregulation in ponies (Fitzgerald et al., 2019a),
which may help to explain the lack of an association between aGLP-1
and community evenness in the ponies with SID in this study. The
current results agree with a recent study which also reported that a
number of organisms from the phylum Firmicutes were
overrepresented in horses with EMS (Elzinga et al., 2016). In
addition, the abundance of Clostridiaceae (phylum Firmicutes)
increases linearly with plasma insulin concentration in mice (Kreznar
et al., 2017). Taken together, these data support the existence of a
relationship between Firmicutes and insulin regulation.

It is not known why moderate insulin dysregulation is correlated
with changes in the abundance of key commensal bacteria. The
abundance of bacteria associated with insulin resistance differs in the
gut microbiome between strains of mice and has been shown to
correlate with their responsiveness to high fat/sugar diets, indicating
that microbial communities can predispose animals to metabolic
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Fig. 5. Differential abundance of niche groups in the equine faecal microbiome affected by diet and insulin regulation status of the pony. The addition
of pasture to a hay diet reduced the abundance of four niches. Insulin dysregulation either increased or decreased niche abundance relative to that of
ponies with normal insulin regulation. Niche groups y2 (P=0.0006), y10 (P=0.006), y12 (P=0.007) and y23 (P=2.97×10−7) refer to balances in the hierarchical
clustering tree (available from: https://data.researchdatafinder.qut.edu.au/dataset/the-effect-of ). A smaller number (y2) was closer to the root of the tree and
represents a larger number of taxa. Taxonomies are shown to family level.
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dysfunction and that this may be driven by genetic variation (Kreznar
et al., 2017). Specific Bacteroidetes genera have been found to
increase in diabetic mice fed a high-fat diet, compared with mice that
did not develop diabetes fed the same diet (Serino et al., 2012).
Further, the phyla Bacteroidetes and Firmicutes can be highly location
specific, and express glycans on their cell surface in order to recognise
and interact with specific host cells (Coyne and Comstock, 2008;
Ormerod et al., 2016). Depletion of these phyla in the mouse caecum
following antibiotic treatment promoted the secretion of GLP-1 from
intestinal L-cells (Hwang et al., 2015). Currently, GLP-1 secretion
from the small intestine has been confirmed in horses (Kheder et al.,
2018), but the presence and function of enteroendocrine cells in the
equine large intestine requires clarification. However, colonic L-cells
can secrete GLP-1 after stimulation by short-chain fatty acids in other
species (Tolhurst et al., 2012). As the faecal microbiome only
represents microbial populations from the distal hindgut (Costa et al.,
2015; Fliegerova et al., 2016), it is not known whether the changes in
microbial evenness in the current study are a consequence of incretin
signalling. Studies that determine whether the differentially abundant
niche groups are involved in cross-talk with enteroendocrine cells in
the small and/or large intestine, and play a role in incretin signalling
and metabolic dysfunction would be very informative for our
understanding of equine insulin dysregulation.
Organisms from the phylum Kiritimatiellaeota (previously

subdivision 5 of the Verrucomicrobia phylum) are present in the
equine gastrointestinal microbiome and increased in abundance in
ponies with EMS (Elzinga et al., 2016; Steelman et al., 2012). In this
study, it was the fourth most abundant phylum, which is consistent
with the known role of these bacteria in anaerobic environments
(Spring et al., 2016). Taxa within Kiritimatiellaeota contributed to
niche group changes that were evident between the two diets, and also
separated insulin-dysregulated from metabolically healthy ponies.
There are very little data about this phylum, which has only recently
been recognised as a separate taxonomic group fromVerrucomicrobia
and its location in mucus layers and biofilms may be relevant to
intestinal health, which may impact the gut–endocrine axis (Spring
et al., 2016). Recognition of these two distinct phyla will improve our
ability to describe the microbial composition of the equine faecal
microbiome, and indeed Verrucomicrobia were less abundant than
Kiritimatiellaeota in this study. Improved identification of organisms
highlights the evolving nature of gastrointestinal microbiome research
and indicates that analysis of the equine faecal microbiome needs to
remain flexible. Previously, it was not possible to identify many of the
microorganisms present in the gastrointestinal tract as they could not
be cultured outside of the gastrointestinal tract (Delgado et al., 2006;
Deshmukh et al., 2019). The use of 16S rRNA sequencing technology
in recent studies has enhanced the identification of bacterial species.
However, assigning function to the microorganisms identified is not
possible without shotgun metagenomic technologies, and ongoing
refinement of genome sequencing will greatly enhance our
understanding of the microbiome.
Of 16,492 OTUs identified, just 37 were observed in all 32

samples. This indicates there is extensive functional redundancy
within the microbiome, wherein many taxa can fulfil a niche and
these niches overlap. Shifts in functional capacity within a
microbiome cannot be reliably detected by 16S rRNA
sequencing. Grouping co-occurring taxa into balance trees as
done here may approximate niche groups and avoid challenges in
comparing microbiome samples which consist predominantly of
unique OTUs (Morton et al., 2017). Balances can be highly
discriminatory and list the same taxon on both sides. Related taxa
are more likely to co-occur as a result of taxa of the same species

sharing similar traits (Silverman et al., 2017). The balances shown
in this study reflect relative abundance differences in closely related
taxa, and suggest that niche changes were occurring. The taxa that
decreased in relative abundance on pasture have been associated
with fibre intake and complex polysaccharide fermentation in
humans (Kovatcheva-Datchary et al., 2015; Rampelli et al., 2015),
healthy gut function and a decrease in inflammation (Punzalan and
Qamar, 2017; Stärkel et al., 2016; Verdu et al., 2016), and the
production of short chain fatty acids (Flint, 2004). The abundance of
two niche groups was influenced by pasture and one was further
influenced in the MID cohort. Thus, some niches may be impacted
differently in MID ponies by a diet change.

A change in the relative abundance of key taxa with respect to
insulin regulation has been linked to metabolic and immune health in
other species. For example, the Christensenellaceae R-7 group, which
was decreased in abundance in insulin-dysregulated ponies in this
study, was associated with having a lower BMI in healthy humans
(Tamura et al., 2017) and was also decreased in abundance in patients
with colorectal cancer (Stebegg et al., 2019). The relative abundance
of Rikenellaceae was increased in insulin-dysregulated ponies in this
study, is positively correlated with insulin concentration in mice
(Kreznar et al., 2017), and is also increased in human patients with
cardiovascular disease and type 2 diabetes mellitus relative to paired
healthy controls (Sanchez-Alcoholado et al., 2017). These data
suggest an association between Rikenellaceae and insulin regulation
in multiple species, including horses, and investigations into whether
these changes precede the onset of metabolic dysfunction would help
to determine whether microbiome dysbiosis is a cause or an effect of
insulin dysregulation. Lastly, Erysipelotrichaceae UCG-004 taxa
decrease in abundance in obese humans, with or without metabolic
syndrome (Chávez-Carbajal et al., 2019). Obesity commonly co-
occurs with insulin dysregulation in ponies with EMS but was not
evident in all of the dysregulated ponies in this cohort, which may
have influenced the greater abundance of Erysipelotrichaceae inMID
relative to SID ponies. Such shifts in functional capacity may partly
explain why the insulin response in the MID group was attenuated
compared with that in the SID group.

Bilirubin enters the gastrointestinal tract via the liver and in rats
is metabolised by members of the Bacteroidetes phylum to
urobilinoids (Vitek et al., 2005). In the horse, Bacteroidetes may
fulfil a similar function. However, the differences in serum bilirubin
that occurred between ponies of different metabolic states was not
accompanied by a difference in the proportion of Bacteroidetes in
their faecal microbiome. Thus, any association between bilirubin
and metabolic status may not be associated with the microbiome.
This is an unexplored area of equine medicine.

Conclusions
This study has shown that metabolically healthy ponies have greater
microbial stability when challenged with a subtle dietary change
compared with moderately insulin-dysregulated ponies. Taxawithin
the phyla Bacteroidetes, Firmicutes, Kiritimatiellaeota and
Spirochaetes have been identified as differentially abundant when
compared between both the metabolic status of the pony and the
diet. Based on the data from this study, we recommend further
studies into the presence of a microbe–gut–endocrine axis in the
horse and its potential role in insulin dysregulation.
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