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INTRODUCTION
The response of insects to dehydration is defined by their ability to
maintain the water pool necessary to remain functional and to
prevent or recover from the stress of dehydration (Hadley, 1994).
Water balance is maintained by reducing water lost through cuticular
and respiratory routes, improving water re-absorption by the
alimentary canal, or increasing water uptake by drinking or
absorbing water vapor. Water stress is alleviated by increasing the
internal concentrations of protective sugars and polyols and by up-
regulating the expression of stress-related proteins that repair
damaged proteins, reduce oxidative stress and maintain cellular
integrity (França et al., 2007; Li et al., 2009; Lopez-Martinez et al.,
2009). Previous studies have usually focused on a single bout of
dehydration and rehydration to establish an insect’s water balance
profile (Wharton, 1985; Hadley, 1994; Benoit, 2010) but insects are
likely to experience multiple bouts of dehydration, especially
overwintering insects that remain dormant (in diapause) for many
months.

Based on several studies of mosquito dehydration (Gray and
Bradley, 2005; Rinehart et al., 2006; Benoit and Denlinger, 2007;
Lee et al., 2009; Benoit et al., 2010), it is evident that mosquitoes
are fairly susceptible to dehydration, i.e. they are hydrophilic. Adult
female mosquitoes contain 60–70% water, and they can lose
approximately 25–35% of their water content before succumbing
(Benoit et al., 2010). To increase their water pool, mosquitoes rely
solely on the ingestion of blood or free water (Gray and Bradley,
2005; Benoit et al., 2010). Up-regulation of heat shock proteins
(Hsp70 and Hsp90) has been noted in three mosquito species during
dehydration, and knockdown experiments using RNA interference

indicate that these two proteins are important for the maintenance
of dehydration tolerance (Benoit et al., 2010). Additionally, the
diapause programme increases the resistance of adult females of
Culex pipiens to dehydration (Rinehart et al., 2006; Benoit and
Denlinger, 2007), and differences in dehydration resistance have
also been noted between M and S forms of Anopheles gambiae (Lee
et al., 2009; Gray et al., 2009), thus both developmental programmes
(diapause and non-diapause) and population differences are known
to impact mosquito dehydration resistance.  

In this study, we examined the effect of multiple dehydration/
rehydration exposures on the physiology of the northern house
mosquito, C. pipiens. To do so, we analyzed the water balance
characteristics and energy reserves of mosquitoes exposed to single
and multiple bouts of dehydration and compared the results with
individuals of the same age held under non-desiccating conditions.
Additionally, we provided a sub-sample of mosquitoes with sugar
and others were provided with no sugar between dehydration bouts
to determine whether the negative consequences of dehydration bouts
could be alleviated by the presence of a nutrient resource. Finally,
we compared the effects of multiple dehydration bouts on both non-
diapausing and diapausing adult females. In response to short
daylength and low temperatures in late summer and autumn, adult
females enter an overwintering diapause (Robich and Denlinger,
2005). Blood feeding ceases, females seek sugar resources to increase
their fat reserves nearly 3-fold greater than non-diapause individuals
(Robich and Denlinger, 2005; Sim and Denlinger, 2008) and
reproduction is halted (Spielman and Wong, 1973; Bowen et al.,
1988). Diapause represents an extended period when food is not
normally available, thus the effects of dehydration bouts could be
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SUMMARY
In this study of the mosquito, Culex pipiens, we examined the impact of multiple bouts of dehydration and rehydration on survival,
depletion of metabolic reserves and egg production in both non-diapausing and diapausing females. Mosquitoes provided with
access to sugar during rehydration survived longer than those allowed to rehydrate without sugar, and their survival was similar
to that of mosquitoes of the same age that were not dehydrated. Among mosquitoes not provided with sugar, each dehydration
bout reduced the mosquito’s dry mass – an effect likely to be due to the utilization of carbohydrates and lipid reserves. The toll
on glycogen and lipid reserves is likely to be especially costly for diapausing mosquitoes that are dependent on these stored
reserves for winter survival. Egg production in both non-diapausing and post-diapausing C. pipiens was also reduced in response
to multiple bouts of dehydration. Although egg quality was not compromised, the number of eggs produced was reduced. Both
non-diapausing and diapausing females can compensate for the nutrient loss due to dehydration by sugar feeding but the
opportunity to feed on sugar is likely to be rarely available in the overwintering habitat of diapausing females, thus the impact of
dehydration may be especially pronounced in overwintering populations of C. pipiens.
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expected to be particularly stressful at this time. We demonstrate that
multiple bouts of dehydration/rehydration, in the absence of sugar,
significantly impact the survival of C. pipiens – most likely to be a
result of depleted nutrient reserves. The consequences are also
evident as a decrease in the number, but not in the quality, of eggs
produced after multiple dehydration/rehydration bouts.

MATERIALS AND METHODS
Mosquitoes

The colony of Culex pipiens L. (Buckeye strain), originating in
Columbus, OH, USA, was maintained as previously described
(Robich and Denlinger, 2005). Larvae were fed a diet of ground
fish food (Tetramin, Tetra, Mulle, Germany). Non-diapausing (ND)
adult females were generated by rearing larvae and adults under
long-day conditions (15h:9h, L:D), while diapausing (D) females
were reared under short-day conditions (9h:15h, L:D). Both ND
and D mosquitoes were reared at 18°C, 93% relative humidity (RH).
Adults were fed 10% sucrose. Nearly all females (non-diapausing
and diapausing) were inseminated before use in the experiments.
Eggs were generated by allowing mosquitoes to feed on a live
rooster (Gallus gallus L.; IACUC 2008A0206). In experiments
using post-diapause females, the females were held in diapause for
50 days before diapause was broken by transfer to 15h:9h L:D
and 25°C.

Dehydration experiments
Adult females, 7 days post-emergence, were used in this study. At
this point, non-diapausing and diapausing mosquitoes reach stable
lipid levels (Mitchell and Briegel, 1989; Robich and Denlinger,
2005; Sim and Denlinger, 2008; Zhou and Miesfeld, 2009). During
each period of dehydration, mosquitoes were held at 0% RH until
individuals lost 25% of their water content, they were then moved
to 100% RH in the presence of liquid water to rehydrate, and then
were finally moved to colony conditions (93% RH in the presence
of free water until the next period of dehydration). Each
dehydration/rehydration bout lasted 20–30h. A diagram of the
dehydration bouts is presented as Fig.1. During rehydration, one
subset of mosquitoes was provided with only water (water only)
and a second subset was provided with 10% sucrose and water (sugar
+ water), thus providing a comparison of mosquitoes exposed to
dehydration/rehydration bouts with and without an energy source.
Additionally, a subset of mosquitoes was held at 100% RH
throughout the experiments (fully hydrated) to ensure that
differences were not due to age. These mosquitoes served as a
control, providing a comparison with mosquitoes that did not
experience dehydration. Mosquitoes were held individually in 10cc
to prevent group effects from altering water balance characteristics
(Benoit et al., 2005; Benoit et al., 2007). In this study, non-
diapausing mosquitoes were compared after 0, 1, 2, 4, 6, 8 and 10
bouts of dehydration, and diapausing mosquitoes were analyzed after
0, 5, 10, 15, 20 and 25 bouts of dehydration.  

Water balance analysis
Mass changes in the mosquitoes were monitored gravimetrically
using an electrobalance (CAHN 35, Ventron Co., Cerritos, CA,
USA). Each mosquito was weighed singly without enclosure after
a brief CO2 knockdown (Benoit and Denlinger, 2007). Mosquitoes
were transferred to the weighing pan and returned to the
experimental conditions within 1minute. Relative humidities were
generated using saturated salt solutions (Winston and Bates, 1960),
0% RH was established with calcium sulfate, and double-distilled
water was used to create 100% RH. All test relative humidities were

validated with a hygrometer (Taylor Scientific, St Louis, MO, USA).
All observations were conducted at 18°C in a controlled environment
room.

The amount of water available for exchange (m, water mass) was
determined according to standard methods for insects (Wharton,
1985; Hadley, 1994; Benoit and Denlinger, 2007). Mosquitoes were
placed at 0% RH and 18°C until a loss of 4–6% of their mass to
ensure that mass changes reflected a shift in the water pool
(Wharton, 1985). Subsequently, consecutive mass determinations
(0% RH, 22–24°C) were made at hourly intervals for a total of six
mass readings, and then individuals were transferred to 80°C, 0%
RH to determined dry mass (d, denoted by five consecutive daily
mass measurements with no changes). Water mass was determined
by subtracting dry mass from the initial mass. Initial, immediate
and final water mass values were analyzed according by Wharton
(Wharton, 1985) for determining water loss rates:

mt  m0e–kt , (1)    

where mt is the water mass at any time t, m0 is the initial water
mass, and k is the rate of water loss expressed as %h–1. The
dehydration level at which the mosquitoes can no longer right
themselves and fly when prodded was defined as the critical activity
point. This denotes the dehydration tolerance – an irreversible lethal
amount of water loss.

Nutritional reserve analyses
The amount of sugar, glycogen and lipids within each mosquito
was determined using anthrone and vanillin assays (Van Handel,
1985a; Van Handel, 1985b; Van Handel and Day, 1988;
Vaidyanathan et al., 2008). Briefly, individual mosquitoes were
homogenized in 0.2ml sodium sulfate, followed by the addition of
1.8ml of chloroform:methanol (2:1). The supernatant was divided
equally into two 16mm�100mm glass test tubes for the
determination of lipid and sugar contents (Van Handel and Day,
1988). The precipitate was utilized to determine glycogen levels.
Each glycogen sample was heated with 1ml anthrone reagent for
10min, and then combined with 4ml of hot anthrone reagent for
10min. All samples (glycogen, lipid and sugar) were cooled to
room temperature, and absorbance was measured with a
spectrophotometer at two wavelengths (625nm and 560nm for sugar
and glycogen samples; 525nm and 490nm for lipid samples). Two
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Fig.1. Schematic representation of the experimental protocol, showing
three bouts of dehydration and rehydration. The duration of each bout of
dehydration/rehydration was 20–30h. ND, non-diapause; D, diapause; RH,
relative humidity.
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samples were measured for each mosquito. Concentrations were
determined using a standard curve.

Total protein content in the mosquitoes was determined with a
Bradford Assay (Bio-Rad, Hercules, CA, USA). Individual
mosquitoes were placed in 500l of phosphate buffered saline (PBS)
and sonicated. The homogenate (100l) was combined with 700l
PBS and 200l Bradford reagent. Samples were incubated for 10min
at 25°C and absorbance at 295nm was determined. Known amounts
of bovine serum albumin were used to establish a standard curve. 

Egg production
To determine egg production, mosquitoes that had been exposed to
multiple bouts of dehydration were subsequently allowed to blood-
feed on a rooster (G. gallus). Non-diapausing mosquitoes were
exposed to their respective number of dehydration bouts, then held
at 100% RH until they were 18 days post adult emergence.
Diapausing mosquitoes were held under diapausing conditions for
50 days, they were then moved to non-diapausing conditions for 10
days before being offered a blood meal. After three days, a 1-liter
container with 0.5l of water was provided for oviposition. The
number of eggs in each raft was counted, and carbohydrate,
glycogen and lipid levels within the eggs were analyzed according
to Harrington et al. (Harrington et al., 2001).

Field collections and relative humidity levels
Relative humidities within overwintering hibernacula were
determined daily within culverts in the vicinity of Columbus, OH,
USA, for one week in December 2006. Briefly, hygrometers
(HOBO H8 Family Data Loggers, Onset Computer, Bourne, MA,
USA) were secured in areas where overwintering C. pipiens were
present in large numbers. All culverts were constructed of cement
and the opening varied from 0.5m to 2.5m in diameter. From the
same areas, mosquitoes were collected for eight weeks to determine
if mosquito water content varied in the field. This set of experiments
was designed to assess natural variation in RH and its impact on
mosquito water content. 

RESULTS
Basic water balance characteristics of non-diapausing

females
Water balance characteristics for C. pipiens exposed to no previous
dehydration bouts were similar to those reported previously (Benoit
and Denlinger, 2007; Benoit et al., 2010). The initial mass of the
non-diapausing mosquitoes was 3.62±0.13mg (mean ± s.e.m.,
N30), and they contained 2.41±0.11mg of water (66.6% water
content). Water loss rate was 3.26±0.09%h–1, dehydration tolerance
was 34.6±1.1%, and survival at 0% RH was 13.4±0.8h. No
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Fig.2. Water balance characteristics of non-
diapausing adult females of Culex pipiens after
multiple bouts of dehydration. �, water only
during recovery; �, 10% sucrose and water
during recovery; �, fully hydrated controls.
Each point is the mean ± s.e.m. of 24
individuals. a, denotes significance (P<0.05)
between the three treatments based on
ANOVA. RH, relative humidity.
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significant differences were noted in any water balance
characteristics after mosquitoes were subjected to four bouts of
dehydration (Fig.2; ANOVA; P>0.05). Following six bouts of
dehydration, survival, dry mass and dehydration tolerance were
significantly lower for water-only mosquitoes compared with sugar
+ water and fully hydrated mosquitoes (Fig.2; ANOVA; P<0.05),
and this trend continued after eight and 10 bouts of dehydration
(Fig.2). By contrast, water loss rates and water mass were not
significantly different at any point in experiments using non-
diapausing C. pipiens (Fig.2; ANOVA; P>0.05). Based on these
results, we conclude that survival of C. pipiens will be reduced
following successive bouts of dehydration unless the mosquitoes
have the opportunity to replenish their metabolic reserves. 

Depletion of nutritional reserves by dehydration
The decline in dry mass implies that metabolic reserves of C.
pipiens were negatively impacted by multiple dehydration bouts.
Initial lipid, carbohydrate and glycogen levels in adult females
were similar to those previously reported (Vaidyanathan et al.,
2008; Sim and Denlinger, 2008). Reductions in glycogen and lipid
were apparent after four bouts of dehydration for water-only
mosquitoes (ANOVA; P<0.05) whereas there was a significant
increase in carbohydrate content for sugar + water mosquitoes after
only two bouts of dehydration (Fig.3). A significant reduction in
protein content of the water-only mosquitoes was noted only after
eight bouts of dehydration (Fig.3). By comparison with females
provided with sugar between dehydration bouts, water-only control
females exposed to 10 bouts of dehydration had reduced lipid levels
by 62%, glycogen by 85%, protein by 24% and sugar reserves
were completely eliminated (Fig.3). Lipids, glycogen and
carbohydrates also significantly declined in fully hydrated controls
as time progressed (Fig.3; ANOVA, P<0.05) but these reduction
levels were not as severe as the levels observed in water-only
mosquitoes subjected to bouts of dehydration. Thus, nutritional
reserves declined when mosquitoes were not provided with a sugar
resource, and this effect was exacerbated by multiple dehydration
exposures. 

Impact of dehydration bouts during diapause
To determine if bouts of dehydration also impact diapausing
mosquitoes in the same way, we monitored metabolic reserves and
survival after exposures to different numbers of dehydration bouts.
The first significant reduction in survival was noted after 10
dehydration bouts (Fig.4A), at which time lipid levels had dropped
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Fig.3. Nutrient reserves in non-diapausing
adult females after multiple bouts of
dehydration. �, water only during recovery;
�, 10% sucrose and water during recovery;
�, fully hydrated controls. Each point is the
mean ± s.e.m. of 24 individuals. a, denotes
significance (P<0.05) between the three
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by 36%, glycogen content by 56% and sugar content by 33%. After
25 dehydration bouts, lipid content was reduced by 55%, glycogen
content by 84% and sugar content by 96% (Fig.4A). Survival of
diapausing C. pipiens was reduced by nearly 25% after 10 bouts
and by nearly 50% when females were exposed to 25 bouts of
dehydration (Fig.4B). Thus, diapausing females of C. pipiens were
affected in the same manner as observed in non-diapausing females:
dehydration reduced metabolic reserves, resulting in reduced
survival.

Egg production
Non-diapausing females laid significantly more eggs per raft than
females that had experienced 50 days of diapause (234±19 eggs vs
175±17 eggs). Five bouts of dehydration (non-diapause females) or
10 bouts (diapause females) reduced egg production compared with
controls (Fig.5). Non-diapausing mosquitoes that were offered sugar
during their recovery period produced nearly the same number of
eggs per raft as those that were not dehydrated (Fig.5, ANOVA,
P>0.05). The mean carbohydrate (1.0g), glycogen (0.4g) and
lipid (0.7g) contents within each egg did not vary between
treatment groups (ANOVA, P>0.05). Thus, multiple bouts of
dehydration did not influence reserves packaged within the egg but
it did have a significant effect on the number of eggs per raft, and
this negative effect could be countered, at least in non-diapausing
females, by the provision of a sugar source.

Field observations
RH levels in three overwintering mosquito habitats varied
considerably from 50% RH to near saturation, within a single week
(Fig.6). Mean humidity was 70–75% RH. Water content of the
mosquitoes was analyzed from overwintering sites; the water
content varied from 48–60% (Fig.7) – values that were considerably
lower than the 66.6% observed in our fully hydrated lab-reared
females (Fig.2). These results suggest that mosquitoes are exposed
to periods of dehydration while residing in their overwintering
habitats and that such fluctuations have an impact on the water
content of the mosquitoes.

DISCUSSION
Drosophila melanogaster (Albers and Bradley, 2004; Folk and
Bradley, 2003) and related Drosophila species (Gibbs and Matzkin,
2001; Hoffmann, 2003) have been the focus of most previous works
on dipteran water balance. Studies with Drosophila demonstrate
higher dehydration resistance (Gibbs and Matzkin, 2001; Matzkin
et al., 2007), reduced water loss rates (Gibbs and Matzkin, 2001)
and reduced metabolism in xeric-adapted species (Gibbs et al.,
2003). Selection for dehydration tolerance in D. melanogaster is
associated with the accumulation of glycogen and differential
metabolism of carbohydrates and lipids (Djawdan et al., 1998;
Bradley et al., 1999; Gibbs, 2002). Similar dehydration resistance
mechanisms appear to be operating in diapausing adults of C. pipiens
(Benoit and Denlinger, 2007) and in Anopheles gambiae (Gray et
al., 2009). But thus far, studies on insect dehydration have nearly
exclusively focused on evaluating the impact of a single exposure
to dehydration. This is the first study to evaluate the impact of
multiple bouts of dehydration and rehydration on the physiology of
mosquitoes (or any other insect). In our experiments, each
dehydration exposure was followed by a subsequent rehydration.
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Several recent studies suggest that dehydration and rehydration elicit
distinct stress responses (Hayward et al., 2004; Lopez-Martinez et
al., 2009), thus rehydration cannot be viewed as a simple reversal
of dehydration stress.

Our results demonstrate a progressive decline in glycogen, lipid
and sugar contents as the number of dehydration/rehydration bouts
increased. This negative effect can be ameliorated by allowing the
mosquito to ingest sugar between dehydration bouts. The reduction
in nutritional reserves that we observed is probably the consequence
of the mosquito’s response to water stress. This form of stress
invokes energy-depleting activities such as the mobilization of
antioxidants, heat shock proteins (Sinclair et al., 2007; Lopez-
Martinez et al., 2009), aquaporins, late embryogenesis abundant
(LEA) proteins (França et al., 2007) and cytoskeletal proteins (Li
et al., 2009). In a recent study, we showed that heat shock protein
70 (Hsp70) and Hsp90 are essential in the mosquito’s response to
dehydration stress (Benoit et al., 2010). Significant changes in
metabolic genes have also been noted in response to dehydration
resistance in Drosophila (Matzkin and Markow, 2009). In addition
to changes in protein and gene levels, other molecules including
trehalose and glycerol are likely to be generated to prevent protein
interactions and reduce membrane changes as water levels within
the mosquito fluctuate (Goyal et al., 2005; Watanabe, 2006). Unless
these reserves are replenished, multiple bouts of dehydration exhaust
the glycogen, lipid and sugar reserves, thus denying the mosquito
the nutritional resources required to respond and subsequently
recover from dehydration stress.

Non-diapausing females of C. pipiens have the potential to
replenish their reserves by feeding on nectar and avian hosts that
are readily available during the summer months. But, this is not the
case for diapausing females. In response to short daylength of late
summer and early autumn, females of C. pipiens cease feeding on
blood and rely exclusively on sugar sources to generate the reserves
needed to bridge the winter months (Mitchell and Briegel, 1989;
Bowen, 1992; Robich and Denlinger, 2005). These additional lipids
are the result of an increase in fatty acid synthesis in diapausing
mosquitoes immediately after adult emergence (Robich and
Denlinger, 2005; Sim and Denlinger, 2009). The diapausing females
then retreat to protected habitats such as caves and culverts
(Vinogradova, 2000) and thus spend the winter in locales that are
unlikely to provide sugar resources. This study and that of Rinehart
et al. (Rinehart et al., 2006) indicate that RH within overwintering
sites can vary significantly, resulting in field-collected mosquitoes
with a reduced water content that is considerably lower than in those
reared in the laboratory at high humidity. We suspect that diapausing
females would be the stage most likely to experience bouts of
dehydration, and also due to the absence of sugar resources during
the winter, it is the stage likely to be most vulnerable to this form
of stress. Low temperature in the overwintering stage, however, can
be expected to counter the impact of dehydration by reducing the
metabolic rate and thus conserve nutrient and water resources
(Robich and Denlinger, 2005; Benoit and Denlinger, 2007). Yet, C.
pipiens remains in the overwintering habitat for 8–9 months, and
is probably subjected to numerous bouts of low humidity during
this time. High humidity, or the presence of liquid water, in the
overwintering habitat is critical for survival, and our observations
indicate variation in the mosquito’s water content under field
conditions. Responding to changes in water content can be expected
to lower the energy reserves necessary to survive until diapause is
terminated in the spring. 

Bouts of dehydration impact not only the survival of the adult
but also the number of eggs she produces. Females with reduced

nutritional reserves are well known to produce fewer eggs (Foster,
1995; Ziegler and Ibrahim, 2001; Harrington et al., 2001; Zhou et
al., 2004). Females allowed to feed on sugar prior to blood feeding
have significantly higher lipid reserves, allowing these females to
produce more eggs that contain more lipids (Ziegler and Ibrahim,
2001; Zhou et al., 2004). During the first gonotrophic cycle,
carbohydrate reserves, along with lipids, are a crucial source of
energy, thus a severe reduction in such reserves is likely to reduce
egg production. Our experiments showed that carbohydrate,
glycogen and lipid levels of adult females were negatively impacted
by chronic bouts of dehydration, resulting in a lower production of
eggs in both non-diapause females as well as post-diapause females
exposed to multiple dehydration bouts during diapause. Interestingly,
no changes in the nutritional reserves were noted within individual
eggs but fewer eggs were produced; a result that is consistent with
previous observations (Harrington et al., 2001) on Aedes aegypti
where non-optimal blood meals reduced egg quantity rather that
individual quality. Thus, our results indicate an indirect impact of
water balance on egg production, presumably through the diversion
of energy reserves from egg production to the combating of water
stress.

In conclusion, we demonstrate that multiple bouts of dehydration
and rehydration significantly impact the physiology of C. pipiens.
We show that nutritional reserves are utilized in response to
dehydration, resulting in the progressive erosion of dehydration
resistance. This effect can be alleviated by sugar feeding between
dehydration bouts. To the best of our knowledge, no previous studies
have addressed the effect of numerous dehydration exposures on
arthropods but several studies have tested the impact of multiple
freeze/thaw cycles in insects (Bale et al., 2001; Sinclair and Chown,
2005). Our results suggest that determining how an insect responds
to chronic bouts of dehydration may be important in evaluating its
water balance profile. For insects undergoing dormancy, maintaining
water balance is one of the most crucial factors determining survival
(Danks, 2000; Benoit, 2010). Most insects in diapause have reduced
water loss rates (Benoit, 2010) but in this study we show that each
bout of dehydration reduces the metabolic reserves needed to survive
through the dormant period, and this can impact post-diapause egg
production as well. Prevention of chronic dehydration during
diapause may be crucial for insects that do not feed during their
dormant periods and thus rely solely on nutritional reserves obtained
before the onset of dormancy.
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