Table 3.

Comparative data for the energetics of locomotion in a range of arthropods

Active MR (J s-1 kg-1) as a function of speed v (m s-1)
GroupSpeciesTechniqueTemperature (°C)Body mass (g)EquationNr2Reference
Crickets Gryllus bimaculatus RT210.70±0.09165.6v+1.2*14 intact0.80This study
222.4v+0.3*9 autotomised0.80This study
Teleogryllus commodus T23.50.95±0.07161.4v+6.1600.54(Full and Tullis, 1990a)
Ants Atta colombica T280.031187.3v+3.7110.64(Lighton et al., 1987)
Camponotus sp.RT25-30?0.012±0.004122.7v+3.3*2890.91(Lipp et al., 2005)
Formica fusca RT 20-250.0047±0.0010700.9v+?*60.93(Jensen and Holm-Jensen, 1980)
Formica rufa RT 20-250.0091±0.0017707.1v+?*40.79§(Jensen and Holm-Jensen, 1980)
Messor capitatius RTNo correlation between speed and the cost of running(Nielson and Baroni-Urbani, 1990)
Leptogenys attenuata RT250.0054±0.0002 (13)189.0v+4.0*9(Duncan and Crewe, 1993)
Leptogenys nitida RT200.0017±0.0003 (40)189.1v+2.5*6(Duncan and Crewe, 1993)
Leptogenys nitida RT250.0017±0.0003 (40)207.4v+3.3*14(Duncan and Crewe, 1993)
Leptogenys nitida RT300.0017±0.0003 (40)300.5v+1.8*10(Duncan and Crewe, 1993)
Leptogenys nitida RT350.0017±0.0003 (40)186.2v+5.4*10(Duncan and Crewe, 1993)
Leptogenys schwabi RT200.0085±0.0007 (43)260.7v+0.7*10(Duncan and Crewe, 1993)
Leptogenys schwabi RT250.0085±0.0007 (43)186.7v+2.9*10(Duncan and Crewe, 1993)
Leptogenys schwabi RT300.0085±0.0007 (43)277.3v+2.7*11(Duncan and Crewe, 1993
Leptogenys schwabi RT350.0085±0.0007 (43)170.6v+4.7*12(Duncan and Crewe, 1993)
Megaponera foetens minorsRT250.0124 (18)121.5v+∼5.4*18(Duncan, 1995)
Megaponera foetens majorsRT250.0404 (16)122.7v+∼3.3*16(Duncan, 1995)
Myrmecocystus mendax RT400.006±0.002 (16)*158.2v+5.6*160.54(Duncan and Lighton, 1994)
Myrmecocystus mexicanus RT300.014±0.004 (16)*104.5v+1.7*160.50(Duncan and Lighton, 1994)
Pachycondyla berthoudi RT250.027±0.002165.9v+1.2320.33(Duncan, 1999)
Paraponera clavata T280.019±0.015212.9v+0.160.56(Fewell et al., 1996)
Pogonomyrmex rugosus RT and T34-430.017188.2v+?*30(Lighton and Feener, 1989)
Wasps Dasymutilla gloriosa RT300.076±0.023168.9v+3.3*60.38, P<0.001(Duncan and Lighton, 1997)
Beetles Anthia fabricii T222.25±0.0740.1v+2.8x0.76(Lighton, 1985)
Calosoma affine T23.50.62±0.0893.1v+1.5170.71(Full and Tullis, 1990a)
Onymacris plana T350.691191.6v+2.616(Bartholomew et al., 1985)
Pachysoma hippocrates T223.05±0.2188.7v+0.620.63(Lighton, 1985)
Physadesmia globosa T350.65239.1v+9.89ns(Bartholomew et al., 1985)
Physosterna cribripes T351.22660.2v+2.910.99(Bartholomew et al., 1985)
Psammodes striatus T222.89±0.3131.1v+1.250.53(Lighton, 1985)
Cockroaches Blaberus discoidalis T254.08±0.76 (8)57.8v+2.780.79(Herreid and Full, 1984)
Blaberus discoidalis T154.15116.3v+2.6180.65(Full and Tullis, 1990a)
Blaberus discoidalis T234.15102.5v+3.9430.83(Full and Tullis, 1990a)
Blaberus discoidalis T344.15120.0v+3.9(Full and Tullis, 1990a)
Blaberus giganteus T25-274.33+0.8146.6v+0.250.93(Bartholomew and Lighton, 1985)
Eublaberus posticus T252.20±0.32 (3)154.5v+0.330.75(Herreid and Full, 1984)
Gromphadorhina chopardi T253.450.7v+1.40.76(Herreid and Full, 1984)
Gromphadorhina portentosa T245.2±0.8 (10)91.7v+2.330(Herreid et al., 1981a; Herreid et al., 1981b)
Periplaneta americana T240.78±0.09126.2v+2.0160.82(Full and Tullis, 1990b)
Periplaneta americana T23.50.90±0.11169.8v+0.9300.84(Full and Tullis, 1990a)
Periplaneta americana T250.73±0.084 (15)183.2v+1.6290.88(Herreid and Full, 1984)
Flies Protophormia terraenovae RT300.043254.0v+11.8*19(Berrigan and Lighton, 1994)
Spiders Marpissa muscosa T200.03±0.009437.7v+4.1*30(Schmitz, 2005)
Myrmecotypus rettenmeyeri T280.022±0.006159.6v+11.2*50.92(Lighton and Gillespie, 1989)
Pardosa lugubris T200.031±0.009138.0v+5.6*24(Schmitz, 2005)
Tarantula (subF Theraphosinae)T2412.78.0v+0.67
Mites Dinothrombium magnificum RT240.032±0.015130.5v+1.1*10(Lighton and Duncan, 1995)
Crabs Ocypode quadrata T242.1±0.58 (5)69.5v+2.3150.67(Full, 1987)
Ocypode quadrata T2426.9±0.74 (5)16.0v+0.9150.76(Full, 1987)
Ocypode quadrata T2470.9±3.49 (5)8.4v+1.4210.42(Full, 1987)
  • For Gryllus bimaculatus (this study), the data are presented for 14 trials of intact males only. Although a linear equation described the relationship between CO2 and walking speed well (r2=0.6697), a slightly better relationship was gained using a polynomial regression (r2=0.7057); the linear relationship between metabolic cost of transport and walking speed is, however, presented to be consistent with the literature (e.g. Full et al., 1990; Herreid et al., 1981a; Lighton and Feener, 1989).

    All values were converted to metabolic rate in J s-1 kg-1 [assuming a respiratory quotient, RQ, of 0.8 and an energy equivalent of 23.3 J ml CO2-1 (Duncan, 1999), unless the authors specifically measured RQ], and speed in m s-1. Sample sizes for body mass, where available, are given in parentheses; r2 values have been given wherever they were available; values have been converted to means ±1 s.d.

    RT indicates studies that used a running tube, T indicates the use of a miniature treadmill.

  • * Values converted from CO2.

  • A circular running tube was used, but the ants were encouraged to run at a fixed pace by a rotating steel ball (this data was analysed as `treadmill' for statistical comparison).

  • § Excluding two outliers.

  • Above ∼0.13 m s-1 the animals did not increase O2 significantly.