U_{max,c} | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
FL (cm) | Mass (g) | (cm s^{-1}) | (FL s^{-1}) | COT_{net} (J kg^{-1} km^{-1}) | Linear fit | r^{2} | P | Exponential fit | r^{2} | P |
15.6 | 34 | 60.0 | 3.8 | 4617 | y=0.007x-0.130 | 0.956 | <0.001 | y=0.022×10^{0.019x} | 0.980 | <0.001 |
15.8 | 38 | 67.5 | 4.3 | 3550 | y=0.006x+0.068 | 0.962 | <0.001 | y=0.128×10^{0.009x} | 0.925 | <0.001 |
17.7 | 50 | 67.5 | 3.8 | 4461 | y=0.010x-0.068 | 0.937 | <0.001 | y=0.094×10^{0.012x} | 0.986 | <0.001 |
18.0 | 50 | 75.0 | 4.2 | 3218 | y=0.007x-0.011 | 0.949 | <0.001 | y=0.093×10^{0.011x} | 0.953 | <0.001 |
19.2 | 54 | 52.5 | 2.7 | 3368 | y=0.008x+0.032 | 0.931 | <0.01 | y=0.114×10^{0.012x} | 0.974 | <0.001 |
19.3 | 71 | 67.5 | 3.5 | 3392 | y=0.011x-0.028 | 0.808 | <0.01 | y=0.150×10^{0.010x} | 0.671 | <0.025 |
19.8 | 77 | 75.0 | 3.8 | 4190 | y=0.014x-0.037 | 0.796 | <0.01 | y=0.171×10^{0.011x} | 0.781 | <0.01 |
23.0 | 107 | 67.5 | 2.9 | 3494 | y=0.017x-0.207 | 0.875 | <0.01 | y=0.094×10^{0.016x} | 0.736 | <0.05 |
24.8 | 145 | 97.5 | 3.9 | 2904 | y=0.019x-0.269 | 0.930 | <0.001 | y=0.206×10^{0.009x} | 0.957 | <0.001 |
25.6 | 162 | 82.5 | 3.2 | 1621 | y=0.012x+0.054 | 0.798 | <0.01 | y=0.279×10^{0.007x} | 0.842 | <0.01 |
26.2 | 170 | 82.5 | 3.1 | 1073 | y=0.008x+0.343 | 0.716 | <0.025 | y=0.447×10^{0.004x} | 0.733 | <0.025 |
26.3 | 179 | 67.5 | 2.6 | 1186 | y=0.009x+0.794 | 0.825 | <0.025 | y=0.865×10^{0.003x} | 0.818 | <0.025 |
Corresponding data for chub mackerel at 24 °C are in Sepulveda and Dickson (2000).
The y-intercept of each linear regression and the coefficient a of the exponential regression (y=a×10^{bx}) can be used as estimates of the rate of oxygen consumption at zero speed (standard metabolic rate) for each individual.
For each individual, the bold r^{2} value indicates the better fit.
FL, fork length; U_{max,c}, maximum continuous swimming speed (see text); COT_{net}, net cost of transport.
For the regressions, the rate of oxygen consumption, y, is in mg O_{2} min^{-1} and swimming speed, x, is in cm s^{-1}.