RT Journal Article SR Electronic T1 Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus) JF Journal of Experimental Biology JO J. Exp. Biol. FD The Company of Biologists Ltd SP 3639 OP 3648 DO 10.1242/jeb.01182 VO 207 IS 21 A1 Witte, T. H. A1 Knill, K. A1 Wilson, A. M. YR 2004 UL http://jeb.biologists.org/content/207/21/3639.abstract AB Measurement of peak vertical ground reaction force (GRFz) from multiple limbs simultaneously during high-speed, over-ground locomotion would enhance our understanding of the locomotor mechanics of cursorial animals. Here, we evaluate the accuracy of predicting peak GRFz from duty factor (the proportion of the stride for which the limb is in contact with the ground). Foot-mounted uniaxial accelerometers, combined with UHF FM telemetry, are shown to be practical and accurate for the field measurement of stride timing variables, including duty factor. Direct comparison with the force plate produces a mean error of 2.3 ms and 3.5 ms for the timing of foot on and foot off, respectively, across all gaits. Predictions of peak GRFz from duty factor show mean errors (with positive values indicating an overestimate) of 0.8±0.04 N kg–1 (13%; N=42; mean ± s.e.m.) at walk, –0.3±0.06 N kg–1 (3%; N=75) at trot, –2.3±0.27 N kg–1 (16%; N=18) for the non-lead limb at canter and +2.1±0.7 N kg–1 (19%; N=9) for the lead limb at canter. The substantial over- and underestimate seen at canter, in the lead and non-lead limbs, respectively, is attributed to the different functions performed by the two limbs in the asymmetrical gaits. The difference in load experienced by the lead and non-lead limbs decreased with increasing speed.