
median upstream and downstream swim speeds, the water velocity
(Eqn 4) could be estimated to be approximately 4.2 cm s−1, which is
at the low end of water velocities of lowland streams (Crampton,
1998). The average swim speeds (Eqn 5) of the three species relative
to the water can also be deduced: S. dariensis: 22 cm s−1;
E. humboldtii: 24 cm s−1; and A. rostratus: 20 cm s−1.
Based on the median speeds and times and assuming that the fish

were continuously swimming upstream and then back downstream
with constant speed and no interruptions by foraging, mating, etc., the
maximum distances the fish could have traveled upstream within one
night were 2.2, 3.0 and 1.1 km for S. dariensis, E. humboldtii and A.
rostratus, respectively. However, we found approximately 15 fish of
each species hiding in root masses during the day per 100 m of stream,

as measured along a 160 m long transect directly upstream of the
electrode array. Thus, the number of fish we observed traversing the
electrode array upstream in one night (Fig. 9A) likely came from at least
330 m (S. dariensis), 180 m (E. humboldtii) and 50 m (A. rostratus) of
stream adjoining our electrode array. However, as some fish appeared to
be quite stationary within or close to our electrode array even at night
(Fig. 5A), traversing fish were likely recruited from longer stretches of
the stream. Thus, the true distances covered by the moving fish in one
night likely lie between several hundred meters and a few kilometers.

EOD field characteristics
An important aspect of electric fish interactions are the effective
EOD signal intensities at the position of a receiving fish. These are
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determined by the EOD amplitudes of the individual fish and their
spatial distribution. The distribution of EOD potentials over the
electrode array (Fig. 10A,B) allowed us to infer the EOD amplitude
and the exponent of the power-law decay in situ (Eqn 7; see
Materials and Methods).
For the example of a detailed measurement of a stationary

A. albifrons recorded in a large outdoor tank (Figs 2A and 10A), the
estimated exponent q=1.61 is similar to that obtained by fitting the
dipole potential based on Eqn 2 to the data (q=1.63; Fig. 2B).
However, the estimated amplitude factor P=24 mV cmqwas smaller
than that obtained from a dipole fit (P=29 mV cmq). This bias to
underestimate the amplitude results from estimating the maximum
amplitude as an average over a substantial fraction of the data in each
distance bin (here 5%). Note, however, that for fish moving
vertically offset from the electrode’s plane, the proposed method
profoundly underestimates both exponent and EOD amplitude. This
effect is evident in the spatial EOD amplitude distribution and can
be compensated by fitting the amplitude distribution over larger
distances only. For the fish traversing the electrode array (Figs 8 and
9), the exponents of the power-law decay of EOD amplitude with
distance were on average q=1.34±0.24 and did not differ
significantly between the three species (Mann–Whitney U-tests,
P>0.25). The exponents are smaller than 2 because of boundary
effects of the water surface and the stream bed (Fotowat et al., 2013).
The quantity that is measured by electroreceptor organs is the

electric field, Eqn 8, i.e. the spatial derivative of the electric field
potential (Fig. 10C). Considering the known sensitivities of the
electrosensory system for the closely related A. albifrons based on
behavioral experiments (0.5 μV cm−1 peak-to-peak amplitude at
100 μS cm−1; Knudsen, 1975), we estimated the effective detection
range of A. rostratus from the field data according to Eqn 9 to 166±
14 cm (n=10) under the encountered natural conditions (Fig. 10C).
Similarly, we estimated the detection ranges for S. dariensis and
E. humboldtii under the same conditions and using the same sensitivity

(Fleishman et al., 1992; Knudsen, 1974, 1975) to be 255±
76 cm (n=97) and 253±54 cm (n=64), respectively.

Our approach allows the comparison of EOD amplitudes within
and across species. Usually, EOD amplitude is measured between a
pair of electrodes positioned at the head and the tail of the fish.
Because we did not know how large the fish were, we used the EOD
amplitude at a distance of 50 cm computed from Eqn 7 as a robust
measure for each fish’s EOD amplitude. The calculated EOD
amplitudes were broadly distributed within each of the three species
of wave-type weakly electric fish (S. dariensis: 0.47±0.30 mV; E.
humboldtii: 0.46±0.23 mV; A. rostratus: 0.16±0.04 mV, Fig. 10D).
Whereas S. dariensis and E. humboldtii had similar EOD amplitude
distributions (Mann–Whitney U-test, P>0.31), A. rostratus EOD
amplitudes were clearly smaller than the former (Mann–Whitney
U-test, P<<0.001). Only E. humboldtii showed a negative correlation
between EOD amplitude and EODf (Pearson’s r=–0.28 and P=0.03;
S. dariensis: r=0.14, P=0.17; A. rostratus: r=–0.13, P=0.72).

DISCUSSION
We developed algorithms for tracking undisturbed and untagged
individual wave-type electric fish based on their own, continuously
active EOD. Using an electrode array, we tracked the movements of
three species of gymnotiform electric fish in their natural habitat
during breeding season and characterized electric field properties of
individual fish. We quantified nocturnal activity and revealed
distinct movement patterns.

Previously, observing activity of wave- and pulse-type electric
fishes in their natural habitats was based on transects recorded with
single electrodes (e.g. Steinbach, 1970; Friedman and Hopkins,
1996). Small electrode arrays have so far been used only in
controlled conditions in the laboratory (Jun et al., 2013; Matias
et al., 2015) and for brief recordings in the field (Madhav et al.,
2018). In the present study and in Henninger et al. (2018), we scaled
this approach up to obtain data on natural behaviors of freely
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moving weakly electric fish in the field over extended periods
of time.

EOD-based individual tracking
Video tracking of behaving animals is well established for
laboratory setups and allows for high throughput screening
(Anderson and Perona, 2014; Mathis et al., 2018). Yet, video-
based methods commonly rely on high-contrast images and
unobstructed line-of-sight, which make them challenging to use
in natural habitats (Dell et al., 2014). Recent advances in
miniaturization make loggers and transmitters attached to the
animals an interesting opportunity for studying behavior in the wild
(Cvikel et al., 2015; Krause et al., 2013; Strandburg-Peshkin et al.,
2015; Flack et al., 2018). However, this approach requires the
capture and recapture of the animals in order to attach the logger and
subsequently retrieve the data. Importantly, it has been shown that
tagging can have a negative impact on the animal’s fitness (Saraux
et al., 2011). However, tagging induced only a transient stress
response of cortisol levels, metabolic rate and growth in killifish
(Reemeyer et al., 2018).
In contrast, EOD-based tracking exclusively relies on the fish’s

own continuously emitted signals and therefore does not disturb the
animals. This tracking approach allows for following individuals
over time (Madhav et al., 2018), provides direct access to the fish’s
communication signals (Henninger et al., 2018), and excels in terms
of sub-second temporal resolution and a decent spatial resolution of

approximately 10 cm. However, physical interactions such as
mouth wrestling or tail nipping, which could easily be detected
visually in the laboratory (Triefenbach and Zakon, 2008), are
inaccessible and can only be inferred indirectly, if at all, from EOD
signals, context and movement dynamics.

Far-field characteristics of EODs
The electric near-field of electric fish is asymmetrically distorted
along the body axis because of the elongated electric organ
(Heiligenberg, 1973; Rasnow and Bower, 1996; Assad et al., 1998,
1999; Stoddard et al., 1999; Chen et al., 2005). At distances larger
than approximately two body lengths, the electric far-field
approaches that of an ideal dipole (Knudsen, 1975), independently
of any asymmetries in the near field. Although the shape of the
measured far-field can be well described by an ideal dipole model
(Fig. 2B), the exponent describing the decay of the field amplitude
with distance is, at 1.6, clearly smaller than the exponent of 2 of the
ideal dipole. The non-conducting bottom of the tank and the water
surface induce boundary effects that compress the electric field
(Fotowat et al., 2013) and result in a reduced exponent or even an
exponential instead of power-law decay (Yu et al., 2019).

EOD-based localization of fish
We computed estimates of the position of the fish based on the
power at a fish’s EODf measured on many electrodes of the array.
Fitting a dipole model has been used successfully for estimating fish
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position (Jun et al., 2013; Madhav et al., 2018). However, these
studies have not taken the reduced exponent in shallow water into
account and assumed movements of the fish in the plane of the
electrode array only. Our simulations showed that the dipole fit
works well as long as the fish is in the grid’s center. However, the
performance of the dipole fit deteriorates the farther the fish is above
the plane of the electrode array and the closer it is at its borders
(Fig. 3). A simple weighted average of the positions of the four
electrodes with the largest signal amplitude turned out to be far more
reliable, yielding localization errors below 10 cm, similar to the
performance of the methods used in Madhav et al. (2018). In real-
world scenarios, the dipole-like electric field can also be heavily
distorted by objects such as rocks, plants and roots, where the fish
like to hide. As long as such environments are not taken into
account, model-based position estimates will be less precise and
robust as well as computationally more demanding.
Note also that we tested localization performance with A.

albifrons, a low-amplitude species with an asymmetric near-field
(Fig. 2) (Rasnow and Bower, 1996; Hoshimiya et al., 1980), and
with simulations of an ideal dipole (Fig. 3). The overall dipole field
(Eqn 2) is only multiplied by the EOD amplitude of a specific fish
and by thewater conductivity (Knudsen, 1975); therefore, we do not
expect profound differences in localization performance for species
differing in EOD amplitude or lower conductivities. Localization
performance was also independent of the degree of asymmetry of
the near-field (compare Fig. 2C with Fig. 3A).
Depending on the required spatial resolution, the available

electrode spacing and the water conductivity/EOD amplitude, the
water depth that can be covered by a 2D planar electrode array is
limited. For the scenarios described here, a planar electrode array
covered awater depth of approximately 60 cm sufficiently well. The
proposed methods can, however, easily be applied to electrode
arrays arranged in multiple layers, because the weighted average
(Eqn 1) is directly based on the 3D coordinates of the electrodes.

Species-specific EOD frequencies
At our field site in Darién, Panama, we found three syntopic wave-
type species with quite well separated EODf ranges: two
Sternopygidae species, Sternopygus dariensis with EODf values
below 220 Hz and Eigenmannia humboldtii at 200–580 Hz, and
one member of the Apteronotidae, Apteronotus rostratus, with
EODf values ranging from 580 Hz to 1100 Hz. A similar separation
between Sternopygus and Eigenmannia species was previously
found in Guyana (Hopkins, 1974b), coastal Surinam (Hopkins and
Heiligenberg, 1978), Rio Negro (Bullock, 1969; Steinbach, 1970)
and Napo River in eastern Ecuador (Stamper et al., 2010). EODf
values above 600 Hz are usually occupied by several sympatric
species of gymnotiform fish. In Guyana, A. albifrons overlapped
with Sternarchorhamphus macrostomus (Hopkins, 1974a), in Rio
Negro, five species shared frequencies above 800 Hz (Bullock,
1969; Steinbach, 1970), and in a whitewater river close to Manaus,
Kramer et al. (1981) found 28 species with EODf ranging from 300
to 1800 Hz.
Species identification based on EODf was possible for our data,

because only three species of wave-type fish are known for Panama
(Alda et al., 2013). The high densities of sympatric species sharing
the same frequency band reported from the Amazon basin (e.g.
Steinbach, 1970; Kramer et al., 1981) would pose a major challenge
for future studies with an electrode array in these habitats. One
would need to take into account additional characteristics of the
EOD waveforms or the relative power of higher harmonics (Kramer
et al., 1981; Turner et al., 2007).

Recognizing species that overlap in fundamental EODf is not
only a technical problem. Whether and how gymnotiform fish solve
this problem themselves is not yet understood. Eigenmannia are
able to discriminate female and male EOD waveforms even if they
do not differ in EODf (Kramer, 1999), and Apteronotus
leptorhynchus were shown to chirp more to the signal of a real
fish than to a sinewave mimic (Hopkins, 1974a; Dunlap and
Larkins-Ford, 2003). However, in another playback experiment,
signals based on the EOD waveforms of different species that
overlapped in EOD frequencies failed to elicit differences in chirp
responses in male A. leptorhynchus, although waveforms contained
species-specific information (Fuger̀e and Krahe, 2010).

Weakly electric fish do not need to rely on their baseline EOD
alone. Species-specific modulations of the EOD frequency and
amplitude could also be used to infer species identity (Kramer et al.,
1981). Whereas rises seem to be highly conserved between species,
chirps and EOD waveforms appear to be evolutionarily labile
(Turner et al., 2007), and thus chirps are potential additional cues for
species identification (Fuger̀e and Krahe, 2010). The different types
of chirps and EOD waveforms result in various degrees of
conspicuousness of the resulting signals (Petzold et al., 2016) that
may translate into discriminability by the electrosensory system.
Chirps have also been suggested to aid disambiguation of the sign of
high-frequency beats (Walz et al., 2014).

Note also, that the above-mentioned field studies do not allow
determination of whether species are syntopic or cluster in separate
microhabitats or in time (Kramer et al., 1981). Recordings of electric
activity directly in the field (Stamper et al., 2010; Henninger et al.,
2018; present study) clearly demonstrate that all three wave-type
electric fish are both spatially and temporally coexisting in specific
microhabitats.

EOD interactions across species
Electroreceptor neurons are tuned to EODf and are most sensitive
approximately at the EODf of the individual fish (Hopkins, 1976).
Behavioral thresholds in a detection task were similarly tuned
(Knudsen, 1974). In playback experiments, Eigenmannia virescens
responded to stimulus frequencies mimicking conspecifics (Hopkins,
1974a), and in Sternopygusmacruruswith sexually dimorphic EODf,
males only responded to stimulus frequencies mimicking females
(Hopkins, 1972, 1974b). During interactions of two electric fish, the
difference between the two EODf is the relevant frequency for the
tuning of P-type electroreceptor afferents (Bastian, 1981; Walz et al.,
2014). P-type afferents thus encode relative and not absolute EODf in
their firing rate (but see Sinz et al., 2017 preprint). The question arises
of whether allospecific EODf are encoded by P-type afferents or
whether electric fish have species-specific frequency channels.

Weakly electric fish are clearly able to sense the EODs of their
conspecifics (Henninger et al., 2018). Because the frequency range
covered by wave-type gymnotiform fish is rather broad
(approximately half an octave; Hopkins, 1974b) (Fig. 5B), the
frequency differences resulting from interacting conspecifics can be
relatively large (Fig. 7D). An impressive example is the courting
behavior of a 1035 Hz male A. rostratus towards a 620 Hz female,
resulting in a 415 Hz frequency difference (Henninger et al., 2018).
However, although conspecifics may share a unique range of EODf,
frequency differences do not allow species to be unambiguously
distinguished (Fig. 7D). This ambiguity of frequency differences
could be resolved if individual fish ‘knew’ about their relative
EOD frequency within their species’ EODf range. Interestingly,
electroreceptors of both Eigenmannia virescens and Sternopygus
dariensis are indeed more sharply tuned the higher their best
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frequency (Viancour, 1979; Zakon and Meyer, 1983). Whether this
sharper tuning at the upper end of a species’ frequency range is
enough to sufficiently suppress EODs of other species with higher
EODf still needs to be shown. The related problem at the lower end
of a species’ frequency range remains.
In addition, the harmonics of species with lower fundamental

EODf fall into the sensitive range of the receptor tuning of a species
with higher fundamental frequencies (Fig. 7C). Although smaller in
power, these harmonics might then create a beat that can be encoded
by the receptor neurons. This should be a problem in Apteronotus
species, in particular. Fish of this genus have much lower EOD
amplitudes than Sternopygus and Eigenmannia species (Fig. 10D).
Consequently, the harmonics of even a low-frequency S. dariensis
can be of similar power to that of the fundamental frequency of
A. rostratus (Fig. 6). This suggests that high-frequency fish should
be able to perceive and interact with species of lower EODf. Indeed,
A. leptorhynchus has been shown to increase chirp rate in response
to playbacks and interactions with S. macrurus and
Brachyhypopomus gauderio in the laboratory (Dunlap et al.,
2010). Heterospecific interactions have also been reported for
mormyrid electric fish (Scheffel and Kramer, 2006).

Movement patterns
Our data from the electrode array allowed us to look beyond the
mere presence of weakly electric fish species. Analyzing the
movements of the recorded fish, we found that approximately one-
third of the detections were of fish that traversed the electrode array
with or against the water flow (Fig. 8). At the beginning of their
activity phase at the onset of the night, fish of all three species were
swimming upstream, whereas during the second half of the night,
the fish were preferentially swimming downstream (Fig. 9A).
In contrast, a study on radio-tagged Australian graylings mainly

found downstream movements over hundreds of meters and some
upstream movements at the end of the night (Dawson and Koster,
2018). Based on transect data of general electric activity, Steinbach
(1970) reported diurnal movements of gymnotiform fish over
approximately 100 m from hiding places in deep waters during the
day to shallowwaters at night. Most available movement studies on fish
in rivers, however, have not resolved diurnal movement patterns.
Golden perch, carp, as well as the pulse-type weakly electric fish
Brachyhypopomus occidentalis, for example, stayed within
approximately 100 m for a few months, and only occasionally moved
to a new home range farther away (Crook, 2004; Hagedorn, 1988).
We observed many upstream movements within and close to the

root masses at the undercut bank, where water velocity was slowed
down and where macroinvertebrates (potential prey) might hide and
drift downstream. Downstream movements of the fish occurred
more towards the shallower slip-off slope at the inner side of the
stream’s bend with reduced water speeds. Based on the measured
swimming speeds and on transect data, we inferred a potential
swimming range per night of at least a few hundred meters and up to
3 km. This would be a rather large range for fish of approximately
20 cm length (Minns, 1995), but, as discussed above, most studies
on fish migration behavior consider only movements from day to
day, not within a single day. Depending on the taxon, movement
distances can vary dramatically, but are positively correlated to
fish length as well as stream size (Minns, 1995; Radinger and
Wolter, 2014).

Solitary fish
Eigenmannia virescens has been reported as a social fish species
that is usually found in groups (Hopkins, 1974a; Hagedorn and

Heiligenberg, 1985). Tan et al. (2005) analyzed hundreds of
snapshots of electric activity taken during the day and night in
Ecuador. In most recordings, multiple E. virescens were detected,
but 10 to 20% of the recordings contained only a single fish. In
contrast, Apteronotus and Sternopygus have been mostly found
solitary or in groups of two (Stamper et al., 2010). In the laboratory,
groups of two are more frequent (Stamper et al., 2010), Apteronotus
leptorhynchus shows aggressive physical and electrocommunicative
behavior (Triefenbach and Zakon, 2008), and only dominant males
with the highest EODf stay alone (Dunlap and Oliveri, 2002). In the
field, however, aggressive electrocommunication seemed to be rare
in A. rostratus (Henninger et al., 2018).

The analysis of our field data revealed that many fish were
traversing the electrode array solitarily. This observation is in
particular interesting for Eigenmannia and its jamming avoidance
response (Heiligenberg, 1973; Behrend, 1977). Of the 65 traversing
E. humboldtii observed in a single night, 61 were swimming
solitarily, a large number considering typical shoal sizes of
approximately five that have been reported for E. virescens (Tan
et al., 2005). This suggests that a substantial number of fish disperse
from their group during the night either to forage on their own or to
find mating partners. Such nocturnal dispersion has been observed
in the laboratory (Oestreich and Zakon, 2005). However, Tan et al.
(2005) reported approximately similar numbers of E. virescens
recorded on an electrode during the day and the night. Whether
Eigenmannia forages solitarily or in shoals may also depend on the
specific habitat and/or the availability of food, as has been shown
for wild dogs (Hubel et al., 2016).

Detection ranges
The data of the electrode array allowed us to characterize the spatial
properties of the electric fields for individual fish in situ (Fig. 10A)
without any special recording procedure (Knudsen, 1975; Stoddard
et al., 2007). For the given situation in the habitat, characterized by a
certain water conductivity, electric field compression by the limited
water column, and EOD strength, this allowed us to estimate the
distance at which the electric field decayed down to the known
behavioral sensitivities of several gymnotiform species to
approximately 2 m. Within this range, fish can detect and
perceive each other, as we have shown in the field for attacks of a
resident A. rostratus male towards an intruder (Henninger et al.,
2018). The boundary effects of the water surface and the bottom,
which effectively reduce the exponent of the power-law decay (here
q=1.3) of the dipolar electric field (Fotowat et al., 2013; Yu et al.,
2019), increase the detection ranges compared with a situation
without boundaries and an exponent of 2 (Knudsen, 1975).

This detection range for conspecifics is much larger than typical
distances of less than a body length for object detection (Knudsen,
1975). The minute changes induced by nearby objects are much
smaller than modulations induced by EODs of conspecific and
allospecific electric fish (Nelson and MacIver, 1999; Chen et al.,
2005; Fotowat et al., 2013). By turning and bending the body, the
field strength and thus detectability at a receiving fish are further
reduced even at small distances (Yu et al., 2019). The situation
weakly electric fish face resembles walking with a dim flashlight
through a forest in the dark: only the immediate environment can be
illuminated by the flashlight, but the flashlight of another person can
sometimes be seen over a much larger distance.

EOD amplitudes
Our in situ characterization of electric fields also allowed us to
estimate the amplitude of the EODs (Fig. 10D). EOD amplitude is
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known to be strongly correlated with fish size (length or mass)
within Eigenmannia (Westby and Kirschbaum, 1981), Sternopygus
(Hopkins, 1972) and Brachyhypopomus (Hagedorn, 1988), and also
across species, including Apteronotus albifrons (Knudsen, 1975).
Thus, the more than 10-fold variation of EOD amplitudes that we
estimated for S. dariensis and E. humboldtii seems to reflect
considerable variability in fish sizes. The EOD amplitudes of the
relatively few A. rostratus that we detected were much more
homogeneous than those of the two other species. Most of them
were involved in courtship behaviors and thus may have been above
some minimum size (Henninger et al., 2018).
EODf has also been reported to correlate with fish size and to

signal dominance, for Apteronotus leptorhynchus in the laboratory
(Hagedorn and Heiligenberg, 1985; Dunlap, 2002) and for
Sternarchorhynchus in the wild (Fuger̀e et al., 2011). In contrast,
our data do not show any correlation between EODf and EOD
amplitude for S. dariensis or A. rostratus (Fig. 10D).

Natural sensory scenes
By far, most of our knowledge about the behavior of weakly electric
fish is based on studies of captive fish in tanks. Quantitative
observation of any fish species in their natural habitats has been next
to impossible without tagging, even more so in species that exhibit a
nocturnal and hidden lifestyle. In contrast to non-electric fish,
weakly electric fish can be detected based on their continuous EODs
alone. This has been exploited in many of the outdoor studies,
mostly by means of single electrodes used to locate the fish (e.g.
Bullock, 1969; Steinbach, 1970; Hopkins, 1974a; Kramer et al.,
1981; Hagedorn, 1988; Westby, 1988; Friedman and Hopkins,
1996; Tan et al., 2005; Stamper et al., 2010). Expanding this
technique to arrays of tens of electrodes that monitor the activity of
weakly electric fish over a whole day yields a plethora of valuable
information on the secret lives of weakly electric fishes in tropical
habitats and the associated natural electrosensory scenes that need to
be processed by their electrosensory system. In Henninger et al.
(2018), we found in courtship and aggression contexts of
A. rostratus behaviorally relevant electrical signals of unexpected
frequencies and amplitudes that have so far been largely neglected
in neurophysiological studies.
The multispecies community we describe here (Figs 5 and 7)

hints at the complexity of signals gymnotiform fish are actually
facing. Most of the behavioral and electrophysiological literature so
far has focused on static interactions of two fish, but already relative
movements induce higher-order amplitude modulations of the
resulting signals, so-called ‘envelopes’ (Yu et al., 2012, 2019). The
interaction of more than two fish also results in envelopes and
specific behavioral responses (Partridge and Heiligenberg, 1980;
Stamper et al., 2012). Courtship and aggression behaviors of
A. rostratus in our recordings demonstrate that the fish are able to
selectively respond to specific fish in the presence of other nearby
fish (Henninger et al., 2018). Here, we introduced algorithms that
allow extraction of EOD frequencies and amplitudes of individual
fish as well as distances between interacting fish, providing the basis
for a detailed quantification of the complexity of social signals in
natural scenes in the future.
The movements of the fish traversing the electrode array (Fig. 8)

in combination with transect data along the stream hint at long-range
navigation abilities of the fish in the range of several hundred meters
up to potentially a few kilometers. In small-scale laboratory settings,
gymnotiforms can be trained in spatial orientation tasks (Jun et al.,
2016) and hippocampal-like circuitry has been described in their
pallium (Elliott et al., 2017). How far the fish really travel along the

stream, whether they return back to some preferred hiding place, and
what cues they rely on (electrical, lateral line, visual or olfactory) are
exciting questions for future studies with multiple smaller electrode
arrays distributed along a stream.
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