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Quantifying the swimming gaits of veined squid (Loligo forbesii)
using bio-logging tags
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Pedro Afonso6,7,8 and K. Alex Shorter9

ABSTRACT
Squid are mobile, diverse, ecologically important marine organisms
whose behavior and habitat use can have substantial impacts on
ecosystems and fisheries. However, as a consequence in part of the
inherent challenges of monitoring squid in their natural marine
environment, fine-scale behavioral observations of these free-
swimming, soft-bodied animals are rare. Bio-logging tags provide an
emerging way to remotely study squid behavior in their natural
environments. Here, we applied a novel, high-resolution bio-logging
tag (ITAG) to seven veined squid, Loligo forbesii, in a controlled
experimental environment to quantify their short-term (24 h) behavioral
patterns. Tag accelerometer, magnetometer and pressure data were
used to develop automated gait classification algorithms based on
overall dynamic body acceleration, and a subset of the events were
assessed and confirmed using concurrently collected video data.
Finning, flapping and jetting gaits were observed, with the low-
acceleration finning gaits detected most often. The animals routinely
used a finning gait to ascend (climb) and then glide during descent with
fins extended in the tank’s water column, a possible strategy to improve
swimming efficiency for these negatively buoyant animals. Arms- and
mantle-first directional swimming were observed in approximately
equal proportions, and the squid were slightly but significantly more
active at night. These tag-based observations are novel for squid and
indicate a more efficient mode of movement than suggested by some
previous observations. The combination of sensing, classification and
estimation developed and applied here will enable the quantification of
squid activity patterns in the wild to provide new biological information,
such as in situ identification of behavioral states, temporal patterns,
habitat requirements, energy expenditure and interactions of squid
through space–time in the wild.
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INTRODUCTION
Squid are diverse and ecologically important marine organisms. As
squid are ectothermic animals, their physiology and behavior can be
directly linked to the physical conditions of their surrounding
environment (Kaplan et al., 2013; Rosa and Seibel, 2010). In turn,
squid behavior and habitat use can have substantial impacts on
marine ecosystems and fisheries. Monitoring and observing squid
behavioral patterns and vital rates can be important for
understanding their activity and energy usage (O’Dor et al., 1995;
Pörtner, 2002), as well as for elucidating the broader ecological
interactions between squid and the taxa they influence (e.g. foraging
rates; Clarke, 1977) and how environmental changes may alter these
activities (Pörtner et al., 2004; Rosa et al., 2014).

Because of the inherent difficulties of working in the marine
environments inhabited by squid, experiments and observation
conducted in controlled environments have been used to generate
important information about how these animals move in their natural
environment. Early captive experiments demonstrated that squid are
highly maneuverable and create propulsive forces for locomotion
using a combination of fin motion and jet propulsion (O’Dor and
Webber, 1986).Many cephalopods have been shown to use their fins
for locomotion that requires fine-scale maneuverability, and rely on
jet propulsion for sudden bursts of speed required to evade a predator
(Bartol et al., 2001). By combining finning and jetting, these animals
can also generate different swimming gaits (Anderson and DeMont,
2000; Anderson and Grosenbaugh, 2005; Bartol et al., 2016, 1999;
O’Dor, 1988; Stewart et al., 2010).

Observed gaits range from a smooth translational gait generated
by moving the fins in an undulatory–sinusoidal pattern to a flap-
and-glide gait used to increase speed and acceleration during
jet-propelled fast swimming maneuvers (Bartol et al., 2009). These
gaits may also occur in tandem (i.e. low level jetting in combination
with finning or flapping). Additionally, the habitat and species
behavior seem to influence the predominant gaits that an animal
utilizes. For example, squid like Illex illecebrosus that swim at
moderate to high speeds in the wild may rely heavily on jetting for
propulsion (O’Dor et al., 1995). In contrast, the shallow-water brief
squid, Lolliguncula brevis, demonstrates a complex locomotive
repertoire and a high degree of maneuverability enabled by fin
propulsion (Bartol et al., 2001; Jastrebsky et al., 2017, 2016).
However, there are approximately 700 species of squid and only a
small number of species have been involved in these studies. Deep-
water animals and those that live in more extreme environments are
hard to collect and maintain in captivity, and likely differ in
behavior and physiology from their shallow-water counterparts.
Thus, for many species of squid, movement data may be best
obtained via observations in their natural environment.

Squid are generally considered to operate near their metabolic
limit (Pörtner, 2002) and their jet propulsion and escape jets are
considered a high-cost locomotionmode (O’Dor andWebber, 1991;Received 12 December 2018; Accepted 16 October 2019
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O’Dor et al., 1995). Together with the necessary lift (for dense,
muscular squid) and drag, many squid have, to some extent and at
least historically, been considered inefficient swimmers (O’Dor,
1988). Yet, efficient swimming patterns are likely vital to their
survival and subsequent ecological interactions. Consequently, it
has been suggested that they must use behavioral trade-offs (such as
gliding on currents) to be successful swimmers (O’Dor et al., 2002;
O’Dor and Webber, 1991). Laboratory observations of Loligo
opalescens and depth data from tagged pelagic Humboldt squid,
Dosidicus gigas, suggest these animals use a climb-and-glide behavior
when swimming. ForD. gigas, this behavior has been observed when
vertically migrating or transiting in and above oxygen minimum
zones, with jetting suggested to be a regularly occurring behavior
which enables the climb (Gilly et al., 2006; O’Dor, 1988). In contrast,
pressure sensors integrated into tags applied to Loligo forbesii
indicated that maximal aerobic jetting was infrequent and jetting was
often observed in combination with finning (O’Dor et al., 1995),
suggesting that this benthic-oriented deep-water squid might rely on
diverse combinations of jetting- and finning-based swimming modes
during daily movements and migrations. Laboratory studies of
movement in L. brevis show a predominant use of finning modes to
generate lift and thrust for propulsion at a variety of speeds (e.g. Bartol
et al., 2008; Stewart et al., 2010). In these studies, researchers also
observed fluid flow from the siphon during finning, which is innately
linked to respiration and mantle contraction. Yet, such studies are
typically confined to small flumes, limiting squid movements in order
to accurately observe locomotion. Thus, there is still some uncertainty
regarding how squid may move in an open environment, and the
relative proportions of gait behaviors. Such an understanding of squid
movement could provide insight into why this taxon is so successful.
Identifying these behaviors in situ requires fine-grained concurrent
environmental and behavioral measurements in order to better
understand squid behavioral physiology and the impacts of
environmental forces on squid survival.
Early attempts to study squid in their natural environment using

biologging tags employed acoustic pingers to actively track squid and
quantify vertical and horizontal movements in the water column
(O’Dor et al., 1995). From these and other studies, activity patterns
indicated that tidal currents were a key environmental influence,
and were as important as temperature, diel cycles and foraging
behavior (O’Dor et al., 2002; Stark et al., 2005). Large D. gigas were
successfully taggedusing temperature–depth satellite transmitting tags
(∼1 Hz resolution) and ‘Crittercam’ video packages (Gilly et al., 2006,
2012; Stewart et al., 2013). During these deployments, vertical casts
using a conductivity, temperature and depth (CTD) logger with
oxygen sensorweremade in the general location of the tagged animals.

From these data, it was apparent that the swimming depths ofD. gigas
were greatly influenced by the temperature or dissolved oxygen in the
water column, although it is difficult to conclusively link measured
animal behavior to environmental conditions because of the decoupled
environmental and animal behavioral measurements. These data
provided a unique insight into the behaviors of a large, ecologically
important squid, but the types of sensors and the sampling rates of
these tagswere not able to capture fine-scale behaviors like respiration,
swimming (finning and jetting) or foraging events (Broell et al., 2013).
The identification and classification of squid swimming gaits, along
with associated environmental data, have the potential to aid in our
understanding of squid swimming patterns and behavior in the wild,
which has implications for understanding their activity budgets,
estimated energetic cost and trade-offs for survival.

Bio-logging technology has dramatically improved over the past
several years. Tags are increasingly able to measure a range of
movement, acoustic, physiological and environmental parameters at
high sampling rates for days or weeks at a time (Block, 2005;
Bograd et al., 2010; Costa et al., 2010; Hussey et al., 2015).
However, given access to these high-resolution datasets, it becomes
necessary to develop classification and estimation algorithms that
can efficiently extract behavioral information and allow for effective
analysis (Nathan et al., 2012; Shorter et al., 2017). This combination
of sensing, classification and estimation enables the quantification
of organismal activity patterns that provide critical biological
information, such as identification of behavioral states, temporal
patterns, habitat requirements, estimated energy expenditure and
community interactions (e.g. reproductive activity or predator-prey
events). Thus, the development and evaluation of classification and
estimation technologies in a controlled environment are an essential
first step in establishing the accuracy and viability of the algorithms
before they are used on data from an environment where behavioral
state cannot be monitored directly.

In this work, we present novel data and analysis algorithms that can
be used to identify and classify squid swimming behavior from an
animal-borne bio-logging tag, the ITAG (Mooney et al., 2015). Data
collection and algorithmdevelopment were conductedwith animals in
a controlled environment, enabling a detailed evaluation of the
developed tools and insight into the relative proportions of locomotive
modes (i.e. finning, flapping, jetting). Measurements of movement,
orientation and environmental conditions (temperature, ambient light,
pressure) at high temporal resolution were collected to measure
characteristics of squid locomotion in vivo and develop a robust
estimator for an animal’s activity level and gait based on overall
dynamic body acceleration (ODBA) (Wilson et al., 2006).
Synchronized video recordings of the tagged squid were then used
to build gait and orientation classifiers that were applied to the data
collected in tank experiments to draw conclusions about representative
swimming strategies of captive animals. The data reveal that this large,
negatively buoyant squid predominantly uses finning-based
swimming modes which enabled lower overall ODBA (compared
with jetting alone), suggesting a tendency toward efficient swimming
modalities. The algorithmic and data-processing techniques
developed in this work can serve as the foundation for data-driven
predictors of the patterns used by animals in situ.

MATERIALS AND METHODS
Experimental facilities and equipment
Trials were conducted with captive squid between 15 March and 1
April 2014 at the Porto PimAquarium, a public facility run by Flying
Sharks on Faial Island, Azores, Portugal. Healthy, adult L. forbesii
Steenstrup 1856 squid with a mean (±s.d.) mantle length of

List of symbols and abbreviations
A (t)=[A(t)

x A(t)
y A(t)

z ]T components of acceleration in the tag frame at
time step t

A (t)
s =[A(t)

x,sA(t)
y,sA(t)

z,s]T components of static acceleration in the tag
frame at time step t

A (t)
d vectorof dynamic (movement-induced)acceleration

at time t
A (t)

s vector of static (orientation-induced) acceleration
at time t

IQR interquartile range
ODBA overall dynamic body acceleration
ɛl, ɛh animal-specific low and high threshold,

respectively, for pitch classification
θ(t) pitch of the animal at time step t
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58±4.0 cm (range 52–69 cm) were collected at the nearby island
slope (approximately 200 m depth) by hand jigging. Upon capture,
animals were immediately brought back to the aquarium facility and
maintained in a large 8 m×4m×4m (L×W×D) observation tank
containing filtered seawater pumped from the adjacent Atlantic
Ocean. Approximately 30–60 min prior to tagging, animals were
transferred to flexible, soft containers with a diameter and depth of
1.5 m (Mooney et al., 2015). ITAGs were attached dorsally on eight
individual squid near the posterior of the mantle with sutures (Fig. 1).
The ITAGs are neutrally buoyant bio-logging tags bearing a three-

dimensional (3D) accelerometer, 3Dmagnetometer, and pressure and
light sensors within an epoxy and syntactic foam housing. The tag
dimensions were 108.4 mm×64.0 mm×28.7 mm (L×W×H). Data
from all sensors were recorded at a sample rate of 250 Hz to internal
flashmemory. The accelerometer andmagnetometer sensemovement
and are used to calculate animal locomotion and orientation (pitch,
roll and yaw); the pressure sensor measures the depth of the animal;
and the light sensor measures ambient light levels in the tank during
the experiment (see Mooney et al., 2015, for a detailed description).
After tag attachment and subsequent acclimation period, animalswere
released into a large 8 m×4m×4m (L×W×D) observation tank
containing filtered seawater. Immediately after release, the tagged and
untagged squid exhibited similar coloration patters, body positions,
and interactions with conspecifics and other fishes, including tope
sharks (Galeorhinus galeus) and smaller ‘prey’ fish (Fig. 1). The tags
separated from the animals using a timed-release mechanism. The
mean duration of ITAG recordings was 20:43:51 (h:min:s) but some
recordings exceeded 24 h.
In addition to tag data, three overhead, high-definition video

cameras (GoPro Hero3, San Mateo, CA, USA; 1920×1080
resolution, 30 frames s−1) and two side-looking high-definition
video cameras (Sony HDR-XR550, Tokyo, Japan; 1920×1080
resolution, 60 frames s−1) located at the ends of the tank were used
to record portions of the tag trials. The video cameras were
synchronized using successive flashes of light (via an external
camera flash; Canon, Melville, NY, USA), and tag data were
synchronized to the video by recording the arming of the tag (and its
flashing LEDs) with one of the five video cameras. The video data

were scored by an observer to identify squid behaviors using the
side-looking cameras, which provided information on fin
amplitude, shape, and frequency of the wave along the fin chord.
These human behavioral annotations were used to develop the
classification algorithms, which in turn were used to analyze the
ITAG sensor data. The scored behaviors included finning, flapping
and jetting, as well as arms- versus mantle-first direction of travel.

After tags were recovered, the data were offloaded and
decompressed for analysis using the DTAG toolbox for
MATLAB (Johnson and Tyack, 2003), with all subsequent data
analysis performed in MATLAB 2016b (MathWorks, Cambridge,
MA, USA). The pressure sensor on one out of the eight
deployments malfunctioned and did not produce viable pressure
measurements, and this tag was excluded from further analysis.
From analysis of the original 250 Hz data, finning frequencies of
L. forbesii were determined to be approximately 1 Hz using Fourier
analysis of the raw accelerometry data from the portions of the data
classified as finning. Rapid motions, such as maximal escape jet
propulsion, occurred at a frequency no higher than 10 Hz (0.1 s
event duration) across all animals. The original data (sampled at
250 Hz) were decimated to 25 Hz for further analysis. This
sampling rate was above the sample rate necessary to capture
squid movements and is commensurate with the ‘high-frequency’
rate recommended by Broell et al. (2013) in order to minimize
aliasing when classifying animal behavior using accelerometry data.

Estimating specific acceleration
Overall dynamic body acceleration (ODBA) was used to separate the
animals’ overall accelerometry signal into estimates of specific
acceleration generated by locomotion and gravitational acceleration
caused by animal orientation (Gleiss et al., 2011). This method uses a
moving average filter to separate high-frequency dynamic
accelerations, corresponding to animal gait and movement, from
lower frequency changes in accelerometry, corresponding to changes
in animal orientation. The size of the window used in the moving
average filter was set to 50 samples for the ITAG (Fig. 2B; following
Shepard et al., 2008). The ITAG acceleration data at timestep t were
then split into three component accelerations:A(t)=[A(t)

x A(t)
y A(t)

z ]
T; and

Calibration
square

0.65 m

Camera

Az (heave)
Heading

ITAG

Ax (surge)
Roll

Pitch

Length (8 m)

D
ep

th
 (4

 m
)

Fig. 1. Experimental setup. 8m×4m×4m (L×W×D) holding tank was used for squid high-resolution bio-logging tag (ITAG) experiments at the Porto Pim
Aquarium (Azores, Portugal). Three overhead high-definition video cameras and two side-looking high-definition video cameras (located at the ends of the
holding tank) concurrently recorded behaviors of tagged veined squid. Calibration squares were located at the bottom of the tank to facilitate the recognition of
different squid behaviors, assist with the identification of squid differing in size and analyze the speed of movements during the video analysis.
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a moving average filter was applied to each component. The resulting
signal represented the static (orientation-induced) acceleration signal
A (t)

s =[A
(t)
x,sA

(t)
y,sA

(t)
z,s]

T. The dynamic (movement-induced) acceleration
at timestep twas calculated as the component-wise difference between
the original signal and the static signal: A (t)

d =|A (t)−A (t)
s | (Fig. 2A).

Gait analysis
The focus of this study was to discern the relative locomotive modes
(gaits) used byL. forbesii and subsequently define a gait classification
pipeline based on dynamic acceleration that can be readily extended to
wild squid studies. Previous literature has shown that squid use a
combination of fin movement and jet propulsion both concurrently
and separately tomove through thewater (Bartol et al., 2001). Stewart
et al. (2010) also demonstrated that L. brevis use their fins in different
modes to generate propulsive forces, along with their jet, during
locomotion. In our experiments, trained observers identified visually
distinct swimming gaits from video data of tagged, tank-bound squid,
and features extracted from the tag sensor data were used to develop a
classification algorithm for these visually distinct gaits.
The gait classifier used the absolute magnitude of the estimated

dynamic acceleration and the average power spectral density of the
dynamic acceleration as features to identify the three classes of squid
gaits observed during our trials: (1) finning, (2) flapping and (3)
jetting. The finning and flapping gaits loosely correspond to themode
II and mode III/mode IV squid gaits introduced by Stewart et al.
(2010). The low-acceleration finning gait was characterized by slow,
undulatory motion of the fins with at least one full wavelength of
undulation present along the fin chord and little observable
contribution from jetting propulsion. The intermediate-acceleration
flapping gait was characterized by a full flappingmotion of the fins, in
which the fins on each side of the mantle move upwards and
downwards simultaneously and with approximately equivalent
upstroke and downstroke periods. Flapping was associated with
higher swimming speeds than the finning gait. Finally, the high-
acceleration jetting gait was characterized by rapid acceleration with
the fins tucked alongside the squid mantle (no fin contribution) and
observable jet propulsion. Although L. forbesii are known to employ
jet propulsion in combination with fin propulsion during locomotion
(O’Dor et al., 1995), our use of non-invasive, biologging tags for gait

detection did not readily allow for the contribution of fin- versus jet-
based propulsion to be disentangled in the three observed gaits.

The gait classifier uses the dynamic acceleration signal as an
input and labels all samples within a sliding window of length N as
one of the three possible gaits. We selected this window size of 25
points to match the fundamental frequency of dynamic accelerations
of the slowest observed gait present in the dataset, i.e. finning,
which was an approximately 1 Hz signal. Our analysis used the peak
ODBA magnitude and the average power spectral density in each
window to classify gait using a decision tree classifier (Kotsiantis,
2013) (see Fig. 3 and Fig. 4A). These features were chosen
because preliminary analysis of the data showed that the dynamic
acceleration signal exhibited different magnitudes and frequencies
for the three gaits. Finning was correlated with low ODBA
magnitude and a low spectral density concentrated near 1 Hz;
flapping was correlated with higher ODBA and spectral density in
moderate frequency range (2–5 Hz); jetting had high ODBA peaks
and high overall spectral density with frequency components in the
5–10 Hz range.

To build an automated gait classifier, gait events were manually
labeled in the 64 overhead video clips of tagged animals, for a total
1232 s of labeled behavior across the seven tagged individuals. Data
from both the overhead and lateral cameras were used to score the
observed gait. Half of the video clips (635 s) were used to fit the
parameters of the gait classifier (the training dataset); the other half
(597 s) were held out and used to validate the generalizability of the
classifier to unseen data (the testing dataset).

To perform gait classification, we used a decision tree classifier
(Kotsiantis, 2013) to place each 1 s-long gait window into a finning,
flapping or jetting gait category. Decision tree classifiers are often
applied in small data domains and in scientific applications because of
their low model complexity and interpretability. The decision tree was
fitted on the training dataset using MATLAB’s fitctree method
(MATLAB 2016b) with default parameters and pruning level. For
each 1 s-long window, the peak ODBA acceleration was extracted
using MATLAB’s findpeaks method and the power spectral density
was computed using MATLAB’s spectrogram method (window
length 25 samples, Hamming window, sampling rate 25 Hz). This
length–two feature vector was input into the decision tree for gait
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Fig. 2. Methods. (A) Separating the dynamic acceleration signal from the static acceleration signal. The original acceleration components A(t)=[A(t)
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z ]T from

t=80.0 s to t=120.0 s are shown in light blue, red and green, respectively. After applying a moving average filter to each vector, the resulting signal represents the
static (orientation-induced) acceleration signal A (t)

s =[A(t)
x,sA(t)

y,sA(t)
z,s]T in dark blue, dark red and dark green, respectively. The dynamic (or movement-induced)

acceleration signal was calculated as the component-wise absolute difference between the original signal and the static signal: [A (t)
d =|A (t)−A (t)

s | ]. (B) The size of
the moving average filter was selected such that the average overall dynamic body acceleration (ODBA) value across the dataset ceased to be sensitive to
changes in window size, following the method in Shepard et al. (2008). We found this point to be approximately 50 samples, or 2 s of data at 25 Hz.
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classification and the model parameters were optimized to maximize
classifier accuracy on the training dataset. The resulting decision tree is
shown in Fig. 4A, while the ODBA acceleration and spectral features
are shown in Fig. 3 for a 15 s segment from the training dataset.
We then tested the accuracy and robustness of the classifier by

evaluating classifier performance on an additional test dataset of
paired video/accelerometry data. We ran the trained decision tree
gait classifier on the clips in the testing set and recorded the label
given to each gait event. The overall accuracy of the classifier was
determined as the number of events in the labeled testing data that
were correctly identified by the classifier, divided by the total
number of labeled events in the testing video clips.

Ascending and descending motion
Pressure data provided an accurate measurement of squid depth in
the tank and, similar to natural environments, squid often actively
ascended and descended within the water column (Gilly et al., 2006,
2012). A moving average filter with a window size of 50 samples
was used to filter the pressure data. The sign of the discrete-time
derivative of the pressure data was used to discriminate between
periods of ascent and descent (Fig. 3B). A squid specimen was
defined as ascending if the value of the pressure measurement
decreased between two subsequent measurements as descending if
the pressure measurement increased. It is also possible to include a
third vertical motion category for when an animal was perfectly
stationary in the water column. However, this case occurred very

rarely because the pressure sensor used on the ITAG device is
sufficiently sensitive to capture micro-movements of the squid up
and down in the water column. We therefore chose to always
classify the squid as ascending or descending in the water column.

Forwards and backwards motion
Squid can travel both ‘forward’ (arms first) and ‘backward’ (mantle
first). Although direction changes can be difficult to detect using
accelerometer data alone, our video data revealed that squid tend to
swimwith the leading edge of their body at a positive angle of attack
with respect to the direction of travel, such that the part of the animal
(arms versus mantle) facing the oncoming flow is held vertically
higher (Fig. 3C). Because the tag is mounted rigidly to the squid
body, this corresponds to a positive tag pitch angle when the animal
is traveling arms first and a negative tag pitch when the animal is
traveling mantle first. Tag pitch was calculated using the static
acceleration signal as:

uðtÞ ¼ arctan
AðtÞ
y;spðA2ðtÞ

x;s þ A2ðtÞ
y;s Þ

 !
: ð1Þ

Using data and video observations, we defined swimming
behavior with tag pitch greater than some high threshold (θ(t)>ɛh)
as forward, arms-first motion, and pitch less than some low
threshold (θ(t)<ɛl) as backward, mantle-first motion. Pitch angles in
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Fig. 3. Sample ITAG output. (A) An example of squid gait identification using ODBA, depth and pitch measurement; analysis of the accompanying video footage
validated the automated classification results. A representative period (15 s) of swimming data illustrates the three types of identified gait: finning, flapping
and jetting. These different gaits were observed in the accelerometer data and were characterized using ODBA. (B) ITAG-collected pressure data can be used to
identify the vertical movement of squid in the water column (times of ascent versus descent). (C) ITAG-collected pitch data yielded animal pitch, which was
used to determine the animal’s orientation during swimming (e.g. arms first or mantle first). (D) The frequency response of the ODBA signal. A fast Fourier
transform was run on each 1 s window of the ODBA signal. Each gait exhibits a unique frequency response, which is used in the gait classifier. For example, the
jetting gait has a much higher power spectral density than the other gaits.
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the range ɛl<θ(t)<ɛh were observed during squid direction changes.
Because the magnitude of pitch can vary with animal swimming
style or tag attachment, ɛl and ɛh were calculated as a proportion of
the mean pitch (�u) observed throughout the trial (ɛl=0.95�u, ɛh=�u).
These pitch thresholds were determined manually using a set of
training observations from the video recordings. The accuracy of the
direction of travel classification was quantified by comparing the
automatic, ODBA-based direction classification with human
annotations on a testing dataset containing 817 s of human-
labeled squid direction behaviors.

Diel behavioral patterns
Five of the tag recordings encompassed an entire ca. 24 h period,
during which animals received a natural day–night light cycle
through the overhead windows. We calculated how squid behavior
(e.g. gait, swimming direction, ascending/descending) and ODBA
varied as light varied during the deployment. During the experiment,
the squid were released into the tank after tagging a few hours before
sunset and spent the night in the tank, and the tags were released from
the animals several hours after the following sunrise. The hours of
sunset and sunrise were recorded for each trial and were corroborated
from the ITAG’s ambient light sensor readings. These time stamps
were used to segment a full trial into day and night sections.

Statistical analyses
Following behavioral classification, ODBA amplitude during
various behaviors (e.g. ascending and descending, forward and
backward swimming) and the daily cycle (e.g. day and night) were
then used to identify differences in activity level during
behavioral modes. Statistical analysis of the ODBA values in
relation to the movement, orientation and diel cycle was applied
using a generalized linear mixed-effects (GLME) model in
MATLAB, considering our ∼113 h dataset as a mixed dataset
that has both random and fixed effects (fixed comparison between
categories: ascent/descent, arms/mantle, day/night; random
effect: variation among different squid). GLME models describe
the relationship between a response variable and independent
variables using coefficients that can vary with respect to one or
more grouping variables for data with a response variable
distribution that is not normal. In our model, ODBA peak
amplitude was the response variable, the three categories (ascent/
descent, arms/mantle, day/night) were, respectively (during each
comparison), the predictor variables, and squid ID (1–7) was the
grouping variable. The analysis fitted a GLME model for ODBA
amplitude per category, with the same fixed-effects term and
potentially correlated random effect for category grouped by
individual squid.
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RESULTS
Classification accuracy and gait identification
The decision tree gait classifier was applied to analyze the
accelerometry data from the seven tagged squid. Each 1 s window
of the accelerometry data was classified as finning, flapping or
jetting as described in Materials and Methods (Fig. 3). Finning
behaviors exist along a continuum and were visibly similar,
characterized by undulatory fin movement with at least one full
wavelength present on the fin chord. Qualitatively, finning more
often corresponded to semi-stationary, hovering behavior or slow
translation. Flapping and jetting behaviors were much less common
and corresponded to high-speed maneuvers.
The videos of the squid were analyzed and each gait event with

the tagged squid in the video frame was given a gait label. The
performance of the gait classifier compared with the human-labeled
behaviors was visualized in a confusion matrix (Fig. 4B). The
overall accuracy of the gait classifier was 99.6% (595 of 597 s
classified correctly). The algorithm had high classification accuracy
for finning and jetting gaits (100%: 573 of 573 correct; and 100%: 6
of 6 correct, respectively); flapping detection was slightly less
accurate (89% or 16 of 18 correct). All misclassifications for the
flapping gait were instead assigned to finning.
The classifier was used to analyze all gait events throughout the

experiment, including those that were not captured on video. The
three gait categories (finning, flapping, jetting) were identified in all
seven tagged squid. ODBA values increased across the three gaits,
from finning to jetting (Fig. 5A). Finning had a median ODBAvalue
of 0.06 g [maximum 0.721 g, interquartile range (IQR) 0.049 g,
minimum 0.000 g], flapping had a median value of 0.123 g
[maximum 0.961 g, IQR 0.118 g, minimum 0.003 g], and jetting
had a median value of 0.187 g [maximum 3.872 g, IQR 0.147 g,
minimum 0.001 g] (Fig. 5B). Finning events were detected most
often (Fig. 6), followed by flapping and jetting. Proportionally,
tagged animals spent the vast majority of time finning (98%), and a
much smaller portion of time flapping (1%) or jetting (1%) (Fig. 6B).

Vertical and horizontal motion
The ITAG’s pressure sensor provided information about vertical
movements in the tank, and ODBA was used to estimate the
swimming effort of the animal during ascent and descent (Fig. 7A,B).
Statistical differences between ascent and descent were identified

between ascending and descending ODBA values across the seven
tagged squid. Ascending ODBA values for all squid (Fig. 7B)
revealed a median peak value of 0.108 g [maximum 0.241 g; IQR
0.064 g; minimum 0.006 g]. Descending motion showed a
significantly lower (GLME test; P-value for fixed effect=1.14e−07)
median peak value of 0.096 g [maximum 0.220 g; IQR 0.061 g;
minimum 0.00 g].

Direction of travel
Pitch data acquired by the ITAG’s accelerometers provided
information on the direction of movement with respect to the
body of the animal (arms-first versus mantle-first swimming
behavior). The pitch-threshold classifier described in Materials
andMethods was applied to analyze the accelerometry data from the
seven tagged squid. Each 1 s window of the accelerometry data was
classified as either arms-first or mantle-first swimming (Fig. 3).
Independently, the video of the squid was analyzed by a human
observer and each 1 s event with the tagged squid in the frame was
given a direction of travel label. The overall accuracy of the direction
of travel classifier was 94.4% (771 of 817 s classified correctly).

Peak ODBA values during both arms-first and mantle-first
swimming varied (Fig. 7C), and arm- and mantle-first swimming
motions were statistically different (Fig. 7D; GLME test; P-value for
fixed effect=0.019). Arms-first swimming had a lower median peak
value of 0.099 g [maximum0.220 g; IQR0.059 g; minimum0.005 g],
while mantle-first swimming had a higher median peak value of
0.102 g [maximum 0.241 g; IQR 0.033 g; minimum 0.003 g].

An analysis of the duration of arms-first and mantle-first
swimming events revealed that the tagged squid spent a consistent
amount of time swimming in a single direction before switching
directions throughout the 113 h of total experimental time. The mean
duration of arms-first and mantle-first swimming events was similar,
at 9.7±7.57 and 9.02±6.71 s, respectively. The frequency of
orientation changes was likely caused by the size of the
experimental tank; squid were observed to swim to the end of the
tank before reversing direction and returning across the tank. The data
confirm that the squid did not prefer one swimming orientation over
the other. The total time spent in arms- and mantle-first orientations
was approximately equal when summed across all seven squid: arms-
first behavior was observed for a total time of 58 h 32 min 20 s and
mantle-first swimming for a total time of 54 h 26 min 40 s (Fig. 8).
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Diel behavior
Animals also showed differences in diel patterns (Fig. 7E) across the
five squid that carried a tag through a full day–night cycle.
Significantly higher values of peak ODBA amplitude (GLME test;
P-value for fixed effect=0.008) were found during the night
(Fig. 7F), with median peak ODBA amplitude at 0.103 g [maximum
0.240 g; IQR 0.066 g; minimum 0.002 g]. During the daytime,
median peak ODBA acceleration amplitude was 0.098 g [maximum
0.222 g; IQR 0.061 g; minimum 0.005 g].

DISCUSSION
New methods that enable the long-term persistent monitoring of
animals in their natural environment are vital to answering
fundamental questions about their behavior and mechanics,
particularly for taxa that are difficult to observe like squid.
Biologging tags are a key technology to tackle this problem, but the
physical and environmental constraints on their design and
functionality are a major problem. For squid, these constraints
include minimizing the impact of the tag on behavior and swimming
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mechanics and functioning in the harsh marine environment. These
constraints limit the type, number and location of the sensors
used to measure behavior. Compact, low-power and robust

microelectromechanical systems (MEMS) accelerometers lend
themselves particularly well for persistent monitoring of small
animals for days or weeks at a time, but without additional sensors
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it can be difficult to infer behavior from accelerometry alone. Pressure
and magnetometer measurements are often used to complement
measures of acceleration and, when fused together, result in the
location of the animal in the water column, orientation (pitch, roll and
yaw) and estimates of specific acceleration that result from
locomotion. When combined with anthropometric data, the
magnitude and the frequency of the specific acceleration can be
used to estimate tail beat frequency, swimming speed and energetics in
fish (Broell et al., 2013; Drucker, 1996; Wright et al., 2014).
Importantly, these estimates and correlations with measurable
parameters were both developed and verified in controlled
experimental environments before they were used in environments
where animals cannot be observed directly. Here, we successfully
applied similar methodology to create and then verify the accuracy of
algorithms that can identify and classify squid swimming gait from tag
data. These algorithms are key to quantifying locomotion in free-
swimming animals, and are an important first step in the development
of a framework to quantify locomotion and energetics in free-
swimming squid (Cooke et al., 2016).
The tag used in this work archives high-resolution (250 Hz)

motion data for up to 36 h at a time. Deployments were kept to ca.
24 h for consistency and to observe tag detachment. The attachment
method used (suturing to the dorsal surface of the mantle) provided a
fixed position that likely reduced accelerometer noise. This enabled
the acquisition of high-quality day-scale data that facilitated the
development of a classifier for the identification and analysis of daily
activity patterns in squid. Using the accelerometry-based tag sensor
data, wewere able to accurately classify three distinct swimming gaits
with an overall 99% accuracy. Additionally, wewere able to visualize
and understand the continuum of dynamic acceleration observed
during the finning gait and determine the swimming direction
(arms first versus mantle first). In the constrained tank environment,

finning was by far the most common gait for tagged squid. The
jetting gait, which corresponded to high-energy maneuvers with
no finning contribution, is presumed to be a costly mode of
locomotion (O’Dor and Webber, 1986), seemed to increase ODBA
and occurred rarely.

Notably, the jetting gait we have singled out here was a strong
escape jet. Other studies have shown that some squids produce
multiple jet patterns (Bartol et al., 2016, 2009; O’Dor, 1988) and
high-acceleration jets are observed in the jetting gait and probably
lower amplitude and perhaps graded jets are present in the fin-defined
gaits. Finning behaviors had significantly lower estimates of specific
acceleration (ODBA values), suggesting that movement preferences
may also be related to energetic cost. The finning and flapping gaits
were not likely substantially different from those observed in other
squid species (Anderson and Demont, 2005; O’Dor, 1988; Stewart
et al., 2010), although gait and locomotion are somewhat specific to
species, their buoyance and fin morphology; and our observation
methods differed as well. Our finning gaits appeared similar to mode
II gait (both tail- and arms-first swimming) observed in L. brevis
(Stewart et al., 2010). The flapping we observed occurred in both
head- and tail-first directions andwas similar tomode III and IV gaits.
While these characterizations are useful to address behavioral
patterns, it is vital to note that there was certainly a gradient
between gaits, discernible in part by the ODBA continuum (Fig. 6)
and the blending of finning and flapping noted elsewhere (e.g. mode
III; Stewart et al., 2010). Thus, clear characteristics, such as ODBA
amplitude, provide ways to compare across animals, lab to field, and
perhaps across taxa.

Overall, the classifier was able to automatically identify different
gaits with high accuracy. Classification accuracy was highest for the
most frequently observed finning and the high-acceleration jetting,
and lower for the intermediate flapping gait. All gaits were classified
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with much higher accuracy than the 33% accuracy achievable by a
random classifier, indicating that the classifier was able use the
provided features to distinguish between gaits. Although paired
video recordings and tag data were needed to develop the algorithm,
the classifier was then used to classify gait events from tag data
alone. Given that the experimental dataset consisted of over 113 h of
experimental time, during much of which the squid were not clearly
visible in the camera frame, the ability to autonomously determine
gait from accelerometry data alone was vital.
Extending this work to automatically classify gaits in wild

squid – when ground-truth gait information is unavailable – will
require careful consideration of the trade-off faced by all machine
learning models between accuracy on the given data and accurate
generalization to unseen data. Generally, more complex models
perform better on the observed data but may generalize poorly to
new data; simpler models may have more consistent generalization
performance, but can suffer from low accuracy on observed data.
For the decision tree classifier applied in this work, model
complexity corresponds to the number of ‘splits’ or levels in the
decision tree. Although the decision tree was also able to generalize
well on experimental data, choosing the best model to maintain high
generalization performance on wild squid may require using a more
or less complex decision tree model. Model complexity should be
considered carefully before extending gait models to classify gait
events in wild squid.
During all swimming gaits, animals were observed to ascend and

descend in the water column and tended to spend nearly equivalent
time in the arms- versus mantle-first orientations. Estimates of
dynamic acceleration were higher as the animals moved up in the
water and lower when descending. Video and tag data showed that
the animals actively fin during both ascent and descent, but the
lower ODBAvalues during descent suggest that descent is powered
at least partially by the negative buoyancy of their bodies. This
observation is consistent with climb and glide behaviors observed in
tagged squid in situ (Gilly et al., 2006, 2012). The squid showed
only a slight preference for the arms-first swimming orientation,
spending 52% of the experimental time in the arms-first orientation.
Arms-first swimming would position the head and eyes to provide a
greater field of view, an important consideration for an animal that
relies on its vision for survival and foraging (Shashar et al., 1998).
Our data suggest that these squid did not significantly prefer arms-
first swimming, suggesting that there may be other reasons for
preferring a mantle-first orientation, or that the heightened visibility
allowed by arms-first swimming is only desirable for specific
behaviors, such as foraging, which was rarely observed in the tank-
based experiments. Additionally, the confines of the tank-based
experiment may have suppressed a clear preference for either
swimming direction as the squid changed direction each time a tank
boundary was encountered.
The animals were more active at night (Fig. 7). Like many other

loliginids, L. forbesii are generally thought to migrate vertically and
feed during the evening hours (O’Dor et al., 1995; Porteiro and
Martins, 1994). During the daytime, we did not observe the resting
behavior on the tank bottom that has been reported in other
loliginids (Hanlon and Messenger, 1996). This lack of resting
behavior was also reported in O’Dor et al. (1995), who found that
L. forbesii hovered off the bottom of the tank – a metabolically
costly behavior – and suggested this may be to avoid damage to skin
or predation. Although it is difficult to knowwhether the high levels
of daytime activity observed in our tank-based experiments are
reflective of wild behavior, this behavior would agree with the
putative daytime action of this species in the wild as inferred by the

small commercial L. forbesii fishery in the Azores, in which squid
are jigged for and caught during the day. This suggests squid
themselves are actively hunting during the day. However, we did not
visually observe any squid feeding during the day (which may
reflect the animals’ unrest with the surrounding activity instead of a
real disposition against daytime feeding) but some did feed at night,
as noted by the typical ‘squid-bitten’ fish remains in the morning.
These combined observations would suggest that veined squid are
active throughout the full diel cycle but increase their activity during
the night. This pattern remains to be confirmed in the wild.

Fine-scale activity patterns revealed the prevalence of finning
movements in tank-bound squid. In some respects this finning rate is
surprising, because it has long been noted that fast, muscular,
pelagic squid, such as Illex illecebrosus and Doryteuthis
opalescens, rely on jetting, even at lower swim speeds (O’Dor
and Webber, 1991; Webber and O’Dor, 1986). This jetting rate, at
times, created a conundrum because jetting is not considered an
efficient mode of transport (O’Dor et al., 1995; O’Dor and Webber,
1986; Vogel, 1994). Studies with smaller squid taxa, such as
L. brevis andD. pealeii, revealed that finning is commonly used and
is a relatively energetically efficient gait (Bartol et al., 2008, 2001).
In actuality, jetting frequently occurs because it is coincident with
respiration and mantle contractions, which is probably one reason it
was often noted in previous studies (O’Dor and Webber, 1991;
Webber and O’Dor, 1986). Rather, it might have been the
methodological focus of the pressure sensor of the prior studies
that only measured jetting and may have resulted in finning modes
being overlooked. Our motion sensors and the high-speed camera
data of others (Bartol et al., 2008, 2001) have helped reveal this
additional insight into the occurrence rates of finning behaviors.
Indeed, we predominantly observed undulatory and oscillatory
finning in these large, tank-bound squid. Given that L. forbesii are
negatively buoyant and are thus required to generate lift and offset
drag (Anderson and Demont, 2005; Bartol et al., 2001), the finning
rates noted here may offer performance that most efficiently
combats those constraints. Whether finning occurs at a similar rate
in the wild has yet to be seen, but the sheer dominance of this
behavior in healthy, recently wild-caught squid certainly suggests
that finning will also occur frequently in the field.

The ITAG and the development of other high sampling rate
biologging tools and analysis algorithms are key to creating a system
capable of providing insight into free-swimming squid behavior
previously only accessible using high-resolution cameras, small
tanks, DPIV methods (e.g. Anderson and Demont, 2005; Bartol
et al., 2008) or lower sampling rate field observations (e.g. Gilly
et al., 2012; Stewart et al., 2013). Here, we provide new analysis
algorithms and a novel tag applied to a group of animals whose
in situ behavior is difficult to observe. Although our experiments
were conducted on captive squid, this work provides detailed
observations of fine-scale behavioral patterns for L. forbesii. The
general behavioral trends observed during this experiment, such as
lower ODBA for descending behaviors and increased activity at
night, align well with behaviors that have been observed in the field
(e.g. Gilly et al., 2012).

Building on the gait classification data presented here, future work
will be directed towards the experimental development of empirical
relationships between parameters derived from tag results and the
energetic cost associated with locomotion. The high temporal
resolution sensors and tag utilized, coupled with the algorithms
developed, can be used to understand organismal behavior in their
natural environment. These laboratory results indicate a strong
tendency to swimming modes with lower ODBA, and finning-based
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movement occurred more often than previously proposed, at least for
these large, negatively buoyant squid. The occurrence rates of other
behaviors (arms-first swimming and lower ODBA), and higher
ODBA at night and when ascending, provide new insight into squid
ecophysiology that must be examined in the field.
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