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Fig. 5. In situ hybridization analyses of mRNA
encoding NKA� 1, NKCC2, NCC and UT in the
kidneys of houndsharks acclimated to
SW and 30% SW. NKAα1 (A–F), NKCC2 (G–L),
NCC (M–R) and UT (S–X) mRNAs in SW- (A–C,
G–I,M–O,S–U) and 30% SW-acclimated (D–F,J–
L,P–R,V–X) houndsharks. B,E,H,K,N,Q,T,W and
C,F,I,L,O,R,U,X are magnified views of the
SZ and BZ, respectively. The localization of each
mRNA in the nephron is schematically illustrated
(i–viii). Open arrows, filled arrows and open
arrowheads represent the transitional segment
from the EDT to the LDT, the LDT and the EDT,
respectively. Filled arrowheads represent the
transitional segment from the LDT to the CT in the
SZ, and the CT in the BZ. Sections were
counterstained with Nuclear Fast Red. Scale
bars=400 µm (A,D,G,J,M,P,S,V) and 50 µm (B,C,
E,F,H,I,K,L,N,O,Q,R,T,U,W,X).
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contrast to the results in bull sharks, only UT mRNA expression was
found in the CT (filled arrowheads in Fig. S4B,D,F,H).

Localization of NCC protein in the LDT cells of bull sharks
The intracellular localization of bull shark NCC was examined
using the antiserum raised against a synthetic polypeptide of bull
shark NCC. Consistent with the results of in situ hybridization,
immunoreactive signals for NCC were observed in the LDT of the
nephron in FW individuals (open arrows in Fig. 6A), but not in SW
individuals (Fig. 6D). Immunoreaction for NCCwas localized to the
apical membrane. The use of preimmune serum (Fig. 6B) and
preabsorption of the anti-NCC serum with the synthetic NCC
polypeptide (Fig. 6C) resulted in the disappearance of the NCC
immunoreactive signals in the LDT. Double-labeling fluorescence
immunohistochemistry showed co-localization of apically located
NCC and basolaterally located NKA in the tubular cells of the LDT
(Fig. 6F).

DISCUSSION
It is well recognized that most cartilaginous fishes are principally
marine species, and that the bull shark is a rare euryhaline species
with the capacity to inhabit both SW and FW environments. To
further our understanding of the underlying mechanisms of
euryhalinity in bull sharks, we focused on kidney function in the
present study, as the kidney is the only organ by which excess water
in the body can be excreted in a hypo-osmotic environment. By
means of RNA-seq analysis and the subsequent molecular and
histochemical analyses, we found that NCC expressed in the LDT
and CT is one of the key molecules contributing to the successful
FW acclimation of the bull shark.

Reabsorption of NaCl from the glomerular filtrate
In the SW environment, bull sharks maintain their plasma slightly
hyperosmotic to surrounding SW by accumulating urea in the body,
which is similar to other marine cartilaginous fishes (see also Pillans
and Franklin, 2004). Transfer to a low-salinity environment resulted
in a decrease in plasma ion and urea levels. However, the FW-
acclimated bull sharks still maintained high plasma Na+ (213.7±
9.0 mmol l−1) and Cl− (177.0±3.5 mmol l−1) concentrations, and
the resulting plasma osmolality was 617.7±13.0 mOsm, as has been
previously reported for this species (Pillans and Franklin, 2004;
Pillans et al., 2006) and for other euryhaline cartilaginous fishes
including the Atlantic stingray, Hypanus sabina (Piermarini and
Evans, 1998). These osmolality data indicate that bull sharks
exposed to severe hypo-osmotic conditions must be excreting large
amounts of diluting urine to compensate for the osmotic influx of
water from the environment. In accordance with this idea, a
concomitant decrease in urine osmolality and NaCl concentrations
was observed. In the present study, however, due to technical
limitations, we could not measure the GFR and UFR of SW- and
FW-acclimated bull sharks, and thus could not calculate exact
values for water excretion and NaCl reabsorption in the kidney after
FW transfer. We therefore used the values for GFR and UFR that
were reported in Atlantic stingrays transferred from ambient SW to
50%-diluted SW (Janech et al., 2006) to calculate the hypothetical
absolute amount of reabsorbed NaCl in the bull shark kidney
(Table 2). The estimated values in Table 2 indicate that the transfer
of bull sharks from SW to FW caused an approximately 50%
increase in reabsorption of NaCl from the glomerular filtrate.
It should be noted that, because of the larger osmotic difference

between internal and environmental osmolalities, bull sharks
acclimated in FW are considered to receive a greater influx of water

compared with Atlantic stingrays transferred to 50% SW. In other
words, bull sharks in the FW environment likely filter more plasma
and excrete more urine compared with stingrays. The calculated
values in Table 2 indicate a 1.5 times increase in NaCl reabsorption,
which is lower than the value in stingrays acutely transferred to 50%
SW (2.5 times increase) (Janech et al., 2006), but a greater increase in
NaCl reabsorption is assumed in FW-acclimated bull sharks.
Therefore, we searched for upregulated mRNAs encoding solute
carrier superfamily proteins involved in NaCl reabsorption.

NCC in the LDT: a key molecule contributing to euryhalinity
of the bull shark
We previously identified the expression of NKAα1 and NKCC2 in
the kidney of another cartilaginous fish, Callorhinchus milli
(Kakumura et al., 2015). NKCC2 (Slc12a1) is well known to be
localized in the thick ascending limb of mammalian Henle’s loop
together with NKA, where NaCl is actively reabsorbed for dilution of
primary urine (Fenton and Knepper, 2007). In the elephant fish
kidney, NKAα1 and NKCC2 were colocalized in the EDT and the
posterior half of the LDT (Kakumura et al., 2015), and the NaCl
uptake by NKCC2 is considered to be important for the urea
reabsorption process (Hyodo et al., 2014). We thus initially focused
on NKCC2 as a candidate molecule important for NaCl reabsorption
in FW-acclimated bull sharks. However, no significant change was
observed in the distribution and expression levels of NKCC2 mRNA

A

C D

E

B

F

FW

Preabsorption

Preimmune

SW

In situ hybridization NKA and NCC in FW

Fig. 6. Immunohistochemistry of NCC in the kidney of FW bull shark.
Signalswere localized on the apicalmembrane of the LDT (A, open arrows). The
use of preimmune serum (B) and pre-absorbed antiserum (C) resulted in the
disappearance of the immunoreactive signals. Signals were not observed
in the kidney of SW individual (D). (E) In situ hybridization of NCC mRNA in the
kidney of FW bull shark showing the co-localization of immunoreactive signals
(A) and mRNA signals (E) in adjacent sections. Sections were counterstained
with hematoxylin (A–D) or Nuclear Fast Red (E). (F) Double-labeling
fluorescence immunohistochemistry with anti-NCC antibody (magenta;
indicated by arrows) and anti-NKA antibody (green). Scale bars=20 µm.
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following the transfer of bull sharks to a FWenvironment. Therefore,
we performed RNA-seq analysis to search for other candidate genes
contributing to NaCl reabsorption, and upregulated by FW
acclimation.
In the RNA-seq analysis, a remarkable increase was detected in the

expression of NCCmRNA. Consistent with the results of qPCR, only
a modest level of NCC mRNA signal was found in the LDT of bull
shark kidney in SW, whereas the intensity of hybridization signals for
NCC mRNA considerably increased in the LDT of FW-acclimated
bull shark. NCC is known to be expressed in the apical membrane of
the mammalian distal convoluted tubule (Fenton and Knepper, 2007)
and in the distal segment of the teleost fish kidney (Kato et al., 2011;
Teranishi et al., 2013). Localization on the apical membrane was
confirmed also in the LDT of bull sharks. In the LDT, NCC is co-
expressed with NKAα1, which is well recognized as the generator for
the Na+ electrochemical gradient that is the driving force for NaCl
reabsorption via NCC (Fenton and Knepper, 2007). The upregulation
in the NKAα1 mRNA signal was also observed in the LDT of FW-
acclimated bull sharks. These results strongly suggest that the LDT
contributes significantly to NaCl retention in the FW environment,
and that NCC is a key molecule for NaCl reabsorption in the LDT
(Fig. 7).
In cartilaginous fish, we initially identified NCC mRNA

expression in the gills and kidney of the Japanese houndshark,
T. scyllium (Takabe et al., 2016). The present qPCR analysis
revealed that, in the kidney of houndsharks, expression levels of
NCC mRNA were considerably lower compared with those in the
kidney of FW-acclimated bull sharks, and no significant change was
observed in NCC mRNA levels between SW- and 30% SW-
acclimated houndsharks. In situ hybridization further demonstrated
that NCC mRNA was expressed only in the limited region of the
LDT in the houndshark kidney. In contrast to the kidney, NCC
mRNA levels and the number of NCC-expressing cells in the gill
increased in houndsharks after the transfer from SW to 30% SW
(Takabe et al., 2016). In houndsharks, NCC is more likely to be
important in the gills for absorption of NaCl from the environment.
Although the timelines of transfer experiments were not exactly the
same between bull sharks and houndsharks, our results revealed
that the significant upregulation of NCC mRNA expression in
the LDT was unique to the bull shark, further implying that the

NaCl reabsorption in the LDT is critical for the euryhalinity of this
species.

NCC in the collecting tubule: NaCl reabsorption and/or urea
reabsorption?
In addition to the LDT, upregulation of NCCmRNA expression was
also found in the CT. Expression of NKAα1 mRNA was also
observed, implying that NaCl is reabsorbed in the CT of FW-
acclimated bull sharks. In contrast, neither NKAα1 nor NCC
mRNA signals were detected in the CT of houndshark kidney.
Therefore, NaCl reabsorption in the CT is another feature of the
euryhaline bull shark kidney. The expansion of tubular segments
contributing to NaCl reabsorption, in comparison to the kidneys of
SW-acclimated bull sharks and houndsharks in SWand 30% SW, is
most likely important for highly effective NaCl retention in FW
environments (Fig. 7).

Alternatively, NaCl reabsorption in the CT may contribute to
another important function, that is, urea retention. Based on the
exclusive localization of UT, the CT has been implicated as the urea-
reabsorbing segment in elephant fish and houndsharks (Hyodo
et al., 2004a, 2014; Yamaguchi et al., 2009; Kakumura et al., 2015).
The limited expression of UT in the CT has also been demonstrated
in the bull shark kidney, implying that urea reabsorption is a
common function of the CT in both marine and euryhaline
cartilaginous fishes. We have proposed a model for urea
reabsorption in the tubular bundle, in which the first and the third
loops and the CT are wrapped with an impermeable peritubular
sheath (Hyodo et al., 2014). The first step of this model is massive
reabsorption of NaCl. The resulting increase in osmolality causes
reabsorption of water, which produces a low urea environment in the
tubular bundle. Urea is then reabsorbed from the CT via UT using
the concentration gradient of urea as a driving force (Hyodo et al.,
2014). In this model, NKA and NKCC2 expressed in the third loop
(the EDT) contribute to the NaCl reabsorption. Expression of
NKAα1 and NCC mRNA in the CT of FW-acclimated bull shark
most probably enhances NaCl uptake in the tubular bundle, which in
turn enhances water uptake, and finally urea reabsorption. When we
calculated the amount of reabsorbed urea in bull sharks using the
GFR and UFR data of the Atlantic stingray, the amount in the FW-
acclimated bull shark kidney was approximately two-thirds that of
bull sharks in SW (Table 2). However, again, it would be reasonable
to consider that bull sharks in FW have greater GFR and UFR values
compared with Atlantic stingrays in 50% SW, in order to excrete
excess water in the body. If this is the case, bull sharks in FW
environments reabsorb more urea than in the SW environment in
order to maintain plasma urea levels (Fig. 7).

Currently, the function of the LDT in SWenvironment remains to
be clarified. In elephant fish and houndsharks, NKCC2 mRNA is
expressed in the LDT (present study and Kakumura et al., 2015),
and the LDT is considered to be important for concentrating urea for
subsequent urea reabsorption in the CT (Hyodo et al., 2014).
However, in the bull shark kidney in a SW environment, neither
NKCC2 nor NCC was observed in the LDT (Fig. 7). Further studies
are needed to understand the function of LDT in the kidney of bull
shark in the SW environment by identifying transporters that are
expressed in the LDT.

In summary, we show for the first time that NCC expressed in the
LDT and CT of the kidney is a key molecule for NaCl retention
required for euryhalinity of bull sharks. Our comprehensive
approach with RNA-seq effectively pinpointed several candidate
genes, of which we focused on NCC. The remaining genes with
significant changes in expression profiles will be characterized in

A B
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NaCl
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NaCl

Urea

NaCl

NKAα1
+ UT

NKAα1 + NKCC2 NKAα1 + NKCC2

NKAα1 + NCC

NKAα1
+ UT

SW FW

Fig. 7. Schematic diagram showing changes in kidney function between
SW- and FW-acclimated bull sharks. (A) SW; (B) FW. Note that reabsorption
of NaCl is enhanced in FW-acclimated bull shark kidney by the upregulated
expression of NCC and NKAα1 in the LDT and the anterior part of the CT
(shown in black). The enhanced reabsorption of NaCl in the CTmay contribute
to urea retention.
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further studies to ascertain their role in renal function in the
euryhaline bull shark. In addition, other organs including the gill
(Reilly et al., 2011), rectal gland (Pillans et al., 2005) and liver
(Anderson et al., 2005) are thought to be involved in euryhaline
mechanisms of bull sharks; RNA-seq analysis of bull shark gills is
now underway. Comprehensive studies on these osmoregulatory
organs will uncover a more complete picture of the mechanisms for
euryhalinity in this unique elasmobranch, the bull shark.
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