
Transition metals (i.e. copper, zinc, iron, cobalt, selenium,
manganese) are essential for the health of most organisms,
forming integral components of proteins involved in all aspects
of biological function. Their ubiquity is governed by their
ability to form a wide range of coordination geometries and
redox states, which allows these elements to interact with
many cellular entities, performing pivotal roles in cellular
respiration, oxygen transport, protein stability, free radical
scavenging, and the action of many cellular enzymes, as well
as for DNA transcription. However, in excess they are toxic,
binding to inappropriate biologically sensitive molecules or
forming dangerous free radicals. Consequently, there is a fine
balance between metal deficiency and surplus and it is vital for
organisms to maintain metal homeostasis viabalancing
absorption and excretion. 

Fish are unique among the vertebrates, a consequence of
having two routes of metal acquisition, from the diet and from
the water. This review will focus on the uptake processes
present in the gill and intestinal epithelium of teleost fish for
the three most abundant nutritive metals: iron, copper and zinc.
The majority of the available literature concerns metal uptake
processes in freshwater teleosts, but where appropriate
examples exist, information on seawater teleosts will be
reviewed. Molecular evidence indicates that transporters for
these metals identified in yeast, plants or mammals all show
high sequence homology in key functional regions (Rolfs and
Hediger, 2001), but to date, none of these transporters have
been characterised in fish. However, due to the evolutionary

conservation of these proteins between yeast, plants and
mammals, it is envisaged that fish metal transporters will also
belong to the large iron, copper or zinc metal transporter
protein families already identified. This review will combine
physiological and molecular data to provide an overview of
metal uptake mechanisms in teleost fish. 

Iron
Iron is an essential nutrient to almost all organisms. Iron

positioning in the haem moiety of haemoglobin increases
oxygen binding and carrying capacity, enabling oxygen
transfer to all tissues in multicellular organisms. One of iron’s
key cellular functions is to confer redox activity to the
cytochromes involved in respiration, due to its ability to
exchange electrons in aerobic conditions. A negative
consequence of iron’s redox flexibility is that it produces
oxygen free radicals that are toxic to the cell. Consequently, in
excess, iron can be detrimental to health. In addition, excess
waterborne iron may be toxic to fish, due to the formation
of iron ‘flocs’ on the gills, resulting in gill clogging and
respiratory perturbations (Peuranen et al., 1994; Dalzell and
MacFarlane, 1999). 

Teleost fish iron homeostasis

The iron content of fish is, in general, considerably lower
than that of other vertebrates (Van Dijk et al., 1975), but the
precise daily iron requirements for fish are at present unknown.
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Transition metals are essential for health, forming
integral components of proteins involved in all aspects of
biological function. However, in excess these metals are
potentially toxic, and to maintain metal homeostasis
organisms must tightly coordinate metal acquisition and
excretion. The diet is the main source for essential metals,
but in aquatic organisms an alternative uptake route
is available from the water. This review will assess
physiological, pharmacological and recent molecular

evidence to outline possible uptake pathways in the gills
and intestine of teleost fish involved in the acquisition of
three of the most abundant transition metals necessary for
life; iron, copper, and zinc. 
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Introduction



Aside from the generally lower levels of iron, it is widely
assumed that iron metabolism and function in teleost fish is
similar to that in other vertebrates (Lall, 1989). Animals lose
iron through defecation and epithelial sloughing, and this loss
is compensated for by absorption from the diet. In fact, the
regulation of iron homeostasis is governed by intestinal
absorption, as a regulated excretory mechanism is not known
for iron in higher vertebrates (Andrews, 2000). 

Branchial versusintestinal iron uptake 

The role of the gill or gut in iron uptake is dominated by the
chemistry of this compound in the natural environment. Iron
is one of the most abundant elements on Earth, but in aerobic
environments it is predominantly found as ferric (hydro)oxides
that are relatively insoluble at neutral pH, and thus, ionic
ferric (Fe3+) concentrations are exceedingly low (Stumm and
Morgan, 1996). Consequently, unicellular aquatic organisms
have evolved specialised transport mechanisms to obtain
sufficient iron to meet metabolic demand. This is particularly
pertinent in the expanses of the oceans where free iron may be
incredibly low (Martin and Fitzwater, 1988). Marine bacteria
and blue-green algae have been shown to excrete extracellular
chelators of iron, known as siderophores, with exceedingly
high affinities for iron (logKcond=19–23; Wilhelm, 1995),
forming part of a high-affinity iron-uptake process (see
review by Braun and Killmann, 1999). Iron’s insolubility and
hydrophilic nature in the aquatic environment would suggest
that it is relatively unavailable for uptake by fish from the water
via the gills, and it has been suggested that the diet meets daily
iron requirements (Watanabe et al., 1997). 

Despite the improbability of aqueous iron acquisition by
fish, a number of reports have indicated that fish can obtain
iron from the water. Early work by Roeder and Roeder (1966)
on swordtail (Xiphorous helleri) and platyfish (X. maculatus)
showed that rearing of newly hatched fry in water of a low iron
content [<18 nmol (1µg) l–1 bioavailable iron], at pH 7–8, and
a daily ration that contained <0.07 mg iron, resulted in retarded
growth rates. However, if the water was supplemented with
>25µmol (3.7 mg) FeSO4 l–1, the fry showed an enhanced
growth rate. This response was not observed if the water was
spiked with a similar concentration of ferric nitrate, suggesting
that the reduced ferrous form is more bioavailable. 

There is only one piece of direct evidence for iron uptake
across the gill epithelium using radiotracers. Andersen (1997)
exposed brown trout Salmo truttalarvae (developmental stages
of late-eyed eggs, yolk-sac larvae or start-fed fry) to 6.4 or
636µmol (0.35 or 35 mg) Fe l–1, added as a combination of
59FeCl3 and ferric ammonium citrate. Waterborne iron was
unavailable to late-eyed eggs and yolk-sac larvae with
low bioconcentration factors (tissue-to-water concentration),
indicating that the developing embryos receive sufficient iron
from their maternal stores, the yolk. The ferroportin transcript
(an intestinal basolateral membrane iron transporter identified
in zebrafish Brachydanio rerio; see Intestinal iron uptake,
below, for more details) has been located just below the
membrane (syntical layer) of the yolk cell (Donovan et al.,

2000), suggesting that it is responsible for iron transport from
the yolk to the embryo. In the start-fed fry, the gills begin to
develop, taking on a prevalent role in cation acquisition from
the water (Li et al., 1995). It is the start-fed fry that accumulate
59Fe added to the water. Mortality was seen in the start-fed fry
high-iron group, but it is unclear whether this was due to an
enhanced iron uptake from the water, or the precipitation of
iron resulting in respiratory perturbations (Peurannen et al.,
1994; Dalzell and MacFarlane, 1999). 

The nutritional value of waterborne iron compared to dietary
iron has not been elucidated, but the gills may play a vital role
in iron homeostasis at times of developmental need, for
example, after yolk-sac absorption and prior to feeding. How
fish acquire this iron, despite the constraint of unfavourable
water chemistry, has not been determined and requires further
investigation.

Intestinal iron uptake 

The form in which iron is presented in the feed has a
profound effect on bioavailability. For example, Andersen et
al. (1997) have shown that haem-bound iron may be more
bioavailable than inorganic iron. In mammals, the haem-iron
derived from recycled proteolysis of haemoglobin from the bile
may be reabsorbed (Conrad et al., 1999). In mammals a
considerable amount of iron is still lost via the faeces. This
deficit is overcome by acquisition of non-haem bound iron
from the diet (Andrews, 2000).

Despite very few mechanistic studies of piscine intestinal
iron uptake, it may be possible to predict how iron is taken up
from the diet. This assumption is based on molecular evidence.
cDNAs have been cloned from fish with high sequence
similarity with those genes that encode for iron membrane
transport proteins in yeast and mammalian systems (see review
by Andrews, 2000). 

cDNAs whose sequences show high similarity to the ferrous
iron transporters termed solute carrier 11a1 (Slc11a1) and
solute carrier 11a2 (Slc11a2), formally known as natural
resistance associated macrophage protein 1 (NRAMP1) and
NRAMP2, have been cloned in a number of fish species,
including carp Cyprinus cyprinus(Saeij et al., 1999), rainbow
trout Oncorhynchus mykiss (Dorschner and Phillips, 1999),
zebrafish Brachydanio rerio (GenBank accession number
AF190508) and sea bass Morone saxatilis(GenBank accession
number AY008746). But, to date, no definitive proof that these
sequences encode for an iron transporter has been provided.
Slc11a1 is restricted to the cells of the myeloid lineage and is
involved in resistance to pathogens (Forbes and Gros, 2001).
The role of Slc11a2 in intestinal iron uptake was identified in
two separate laboratories using different methods. Gunshin
et al. (1997) used expression-cloning techniques in African
clawed frog Xenopus laevisoocytes to identify intestinal
mRNA that conferred iron uptake. Conversely, Fleming et al.
(1997) undertook a positional cloning approach to identify
genes responsible for microcytic anaemia (mk) in mice, a
syndrome characterised by defective intestinal iron transport.
Functional studies of this gene revealed that the transporter was
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a Fe2+/H+ symporter, operational in the range of pH 5.5–7. This
has subsequently been confirmed in a number of studies using
the Caco2 cell line, a model cell culture system for mammalian
intestinal function (Han and Wessling-Resnick, 2002;
Zerounian and Linder, 2002). The Fe2+/H+ symporter also
transports other divalent metals such as Mn2+, Co2+, Cu2+,
Zn2+, as well as the non-essential Cd2+ and Pb2+ (Gunshin et
al., 1997). Due to its metal promiscuity, the transporter is
referred to as Divalent Metal Transporter 1 (DMT1), and this
terminology will be used throughout the rest of this review. 

The rainbow trout DMT1 transcripts are located in most
tissues (Dorschner and Phillips, 1999) including the transport
epithelia of the gill, intestine and kidney (N. R. B., personal
observation). In mammals, the DMT1 transcript is also found
in most tissues, but predominantly in the duodenum (Gunshin
et al., 1997). This transcript profile corresponds to the
anatomical pattern of mammalian intestinal iron uptake
(Gunshin et al., 1997). Furthermore, the lumen fluids of the
duodenum are slightly below neutral pH, favouring the
functioning of a proton symporter. DMT1 transcript is
upregulated in iron-deficient mice and is most abundant in the
villus-crypt of the duodenal enterocytes, with transcript levels
decreasing along the crypt–tip axis (Trinder et al., 1999). The
identification of a 3′ UTR iron response element (IRE)
associated with the DMT1 gene gives credence to this protein
being regulated by cellular iron levels (Gunshin et al., 1997,
2001). 

The way in which the intestine maintains iron in a
bioavailable ferrous form is uncertain. During digestion of
food the acidic environment of the stomach releases ferric iron
from the ingested matrix (Powell et al., 1999a; Whitehead et
al., 1996). The ferric iron may be bound to mucin that may act
to maintain metal solubility in the small intestine (Whitehead
et al., 1996). How Fe3+ is physically presented to the intestinal
tissue is unclear, given that it would first have to traverse the
mucus layer covering the epithelium before being taken up.
The identification of a mammalian ferric reductase present on
the apical membrane of the duodenal enterocytes provides
further evidence that iron is imported into these cells viaa Fe2+

transport process (McKie et al., 2001). In addition, ferric iron
may also be reduced via the presence of reducing agents in the
diet, such as ascorbate (Raja et al., 1992). Maintaining an
environment that aids ferrous iron uptake via a Fe2+/H+

symporter will be particularly pertinent to marine fish whose
intestinal lumen chemistry differs from that of freshwater fish
and terrestrial vertebrates (Wilson, 1999). 

The intestine of marine fish secretes large quantities of
bicarbonate, resulting in the precipitation of divalent cations
(Walsh et al., 1991). This secretion may play a role in
osmoregulation of marine teleosts (see review by Wilson,
1999). The presence of HCO3– at concentrations in excess of
50 mmol l–1 (Wilson, 1999) may limit the bioavailability of
Fe2+, via the precipitation of Fe(HCO3)2. In addition, a
consequence of a large HCO3– secretion is an alkaline lumen,
which would result in a proton gradient incapable of providing
the driving force for Fe2+ uptake viaa proton symporter.

Despite such an adverse environment we recently showed
that the European flounder Platichthys flesus intestine
preferentially absorbed ferrous iron when compared to ferric
iron (Bury et al., 2001). Flounder intestinal Fe2+ uptake
occurred predominantly in the posterior region, which differs
from the scenario in mammals where uptake is in the anterior
region (Trinder et al., 1999). This ferrous iron uptake process
was enhanced in fish with low iron status (i.e. low
haematocrit), indicating a physiologically regulated process
(Bury et al., 2001). It is not known how marine fish maintain
Fe2+ availability, but it is hypothesised that epithelial mucus
secretion may play a role in maintaining metal solubility in fish
(Glover and Hogstrand, 2002a), as well as a key role in
modulating the microclimate adjacent to the tissue, making this
environment suitable for metal transport (Powell et al.,
1999a,b).

The passage of iron from the enterocyte into the blood has
recently been discerned. It consists of an iron-regulated
transporter, which was initially identified by three independent
groups, and thus has been termed IREG1 (McKie et al., 2000),
MTP1 (Abboud and Haille, 2000) or ferroportin (Donovan et
al., 2000). Ferroportin was identified by positional cloning of
the gene responsible for hypochromic anaemia in the zebrafish
mutant weissherbst(Donovan et al., 2000).

The study of Donovan et al. (2000) was originally devised
to utilise the concept of ‘model hopping’. Here genetic
information from zebrafish was used to identify the genes in
humans that are responsible for iron deficiency or overload
disorders. The success of this study provides strong evidence
that the machinery for cellular iron export is evolutionarily
conserved between fish and mammals. Ferroportin is located
on the basolateral membrane of the enterocytes (McKie et al.,
2000), and export of iron via this transporter depends on the
presence of a membrane-associated copper containing oxidase,
termed haephestin (Vulpe et al., 1999). Iron is transported out
of the cell as Fe2+, haephestin oxidises Fe2+ to Fe3+, which then
binds to transferrin. Transferrin is present in fish (Tange et al.,
1997) and in this form the iron is transported to other tissues
in the body (McKie et al., 2000). The presence of a 5′-UTR
IRE associated with the IREG1/ferroportin gene demonstrates
that expression may be regulated viacellular iron
concentrations (Donovan et al., 2000; McKie et al., 2000). 

Branchial iron uptake 

The localisation of the DMT1 transcript to the gill
epithelium (N. R. B., personal observation) and the evidence
for iron being taken up by the gill (see Branchial versus
intestinal iron uptake, above) would suggest that the
machinery for iron uptake is present. It is not clear, however,
how fish acquire iron with remarkably low concentrations in
the water. The gills do not secrete siderphore ‘like’ proteins,
but the bacteria (Vibro sp.) present on the gills do (Muiño et
al., 2001). It is possible that the compounds that make up
branchial mucus play a key role in sequestering waterborne
iron, but this needs validation. Mucus does act as a barrier on
the gill enabling a microclimate close to the tissue to form, and
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this may be sufficiently different from the surrounding water
to enable apical membrane iron uptake. 

A diagrammatic representation of the generic cellular iron
uptake pathways in teleost fish, which combines information
for both the branchial and intestinal uptake routes described
above, is given in Fig. 1. 

Copper 
Copper acts as a cofactor for a number of key proteins (i.e.

superoxide dismutase, ceruloplasmin). As with iron, copper’s
flexible redox state means it plays a vital role in cellular
respiration, with cytochrome coxidase being an important
copper protein. Copper is thus an essential element, and daily
dietary requirements for fish are in the region of 15–60µmol
(1–4 mg) Cu kg–1dry mass (Lanno et al., 1985; Watanabe et al.,
1997). However, in excess, copper is toxic. From a dietary
perspective the primary toxic action is predominantly the
production of free radicals in tissues where copper

accumulates. In addition, dietary copper toxicity can occur at
several other loci in the gut and includes inhibition of digestive
enzymes and reduced gut motility (Woodward et al., 1995).
Conversely, high concentrations of waterborne copper affect
branchial function, the main toxic action being a perturbation
of sodium homeostasis (Laurén and McDonald, 1985). For
recent reviews on the toxicity of dietary and waterborne
copper, see Clearwater et al. (2002) and Wood (2001),
respectively. 

Teleost fish copper homeostasis 

Plasma copper levels are tightly regulated in the freshwater
rainbow trout (Grosell et al., 1997). As with mammals (Harris,
2000), the liver is the major organ involved in copper
homeostasis (Grosell et al., 1997, 2000; Kamunde et al., 2001,
2002a). The liver accumulates a large proportion of the copper
absorbed from the diet or water, and is the site for synthesis of
the most abundant copper-containing protein in the body,
ceruloplasmin. Ceruloplasmin is secreted into the blood and

acts as a source of copper to extra-
hepatic organs (Harris, 2000). Copper
may also circulate in the body bound to
albumin and other low-molecular mass
proteins (Harris, 2000). The main site
for secretion of excess copper in teleost
fish is viathe bile (Grosell et al., 1997,
2000) and, in the case of the European
eel Anguilla anguilla, very little copper
is found in the urine (Grosell et al.,
1998). The gills of fish have also been
implicated in copper excretion (Handy,
1996), but this has yet to be fully
characterised. In fish, the mechanism
by which excess copper is transported
across the cannicular membrane of the
liver into the bilary ducts has not been
ascertained. In mammals there are
three candidate secretory pathways: (1)
a Cu-ATPase, identified in patients
suffering from Wilson’s disease, which
is a hereditary disorder that results in
elevated plasma copper concentration,
due to the inability of the body to
secrete copper viathe Cu-ATPase
(termed Wilson’s protein or ATP7B)
(Bull et al., 1993; Harris, 2000; Puig
and Thiele, 2002); (2) a multiorganic
cation transporter (cMoat) (Elferink
and Jansen, 1994) and (3) lysosomal
secretion (Gross et al., 1989). 

Branchial versusintestinal copper
uptake

The diet is the major source of
copper for fish under optimal growth
conditions (Handy, 1996; Kamunde et
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from gill and intestine. See text for more details. Briefly, ferric iron (Fe3+) is reduced viaan
apical membrane bound ferric reductase (FR). Ferrous iron (Fe2+) enters the cell viaa Fe2+/H+

symporter (DMT1). Basolateral Fe2+ export occurs viaan iron regulated transporter (IREG1),
also known as ferroportin. IREG1 is linked to a membrane-bound copper-containing oxidase,
termed hephaestin (HP), that oxidizes Fe2+ to Fe3+. Fe3+ binds to transferrin (TF) in the blood.
Li, aquatic ligand.



al., 2002a,b). It is evident from waterborne toxicity studies that
the gill can also contribute considerably to copper uptake
(Taylor et al., 2000). Studies by Miller et al. (1993) and
Kamunde et al. (2002a) have highlighted the significance of
waterborne copper as a potential nutritional source to rainbow
trout. In the latter study, rainbow trout fry were fed either a
low [12.5 nmol (0.8µg) Cu g–1], normal [50 nmol (3.2µg)
Cu g–1], or high [4390 nmol (281µg) Cu g–1] copper diet, in
combination with either low [6.25 nmol (0.4µg) Cu l–1] or
normal [47 nmol (3µg) Cu g–1] waterborne copper regimes. By
utilising the copper radionuclide, 64Cu, the investigators were
able to ascertain the relative significance of dietary or
waterborne routes for newly accumulated copper in these
various groups. The fish fed with a low-copper diet and kept
in low-copper water showed a marked reduction in growth over
a 50-day experimental period. The growth rate of those fish fed
the same diet but reared in normal waterborne copper levels
showed no changes compared to the other groups, and 60% of
the copper accumulated by these fish was from waterborne
copper. In contrast, the dietary source of copper accounted for
99% of the accumulated copper in those fish fed on a high-
copper diet. Miller et al. (1993) concluded that the diet was
also the major source of copper for rainbow trout, the copper
accumulated from the waterborne route accounting for 37% of
the liver copper burden. These studies demonstrate the
significance of waterborne copper for fish health at times when
the dietary source of copper may be inadequate. 

Intestinal copper uptake 

In fish there is evidence that apical entry of copper into the
intestinal epithelium is a passive process, and the rate-limiting
step of intestinal copper uptake is basolateral membrane
extrusion (Clearwater et al., 2000; Handy et al., 2000). This
conclusion is supported by two independent observations.
Clearwater et al. (2000) noted a Q10 ratio of <1 for copper
accumulation into the epithelium of rainbow trout intestine,
and Handy et al. (2000) observed a dose-dependent
accumulation of copper into the intestinal mucosa of the
African walking catfish Clarias gariepinus, but no such
relationship between lumen copper concentrations and the
appearance of copper into the blood. Passive diffusion may
also occur in mammals (Crampton et al., 1965). Other uptake
pathways may be present, such as the copper entry via an
amiloride-sensitive Na+ pathway observed in rat intestine
(Wapnir, 1991). Caution is required, however, when
interpreting metal uptake studies in the presence of amiloride,
because this drug may form metal-complexes that are
unavailable to the organism (vizBury and Wood, 1999; Grosell
and Wood, 2002).

It is of interest that mammalian intestinal copper uptake
primarily occurs in the small intestine (Wapnir and Stiel,
1987), whereas in fish, copper uptake is found on the
mid/posterior region (Clearwater et al., 2000; Handy et al.,
2000). The same disparity between the positioning of the iron
uptake pathways in fish and mammals has also been observed
(Bury et al., 2001). 

At present there are two proposed mechanisms of basolateral
Cu transport in fish: (1) a Cu P-type ATPase and (2) a Cu/anion
symporter (Handy et al., 2000). The Cu-ATPase involved in
mammalian intestinal copper uptake was identified from
patients with Menkes (MNK) syndrome. This genetic
condition results in low plasma copper levels due to a defect
in the MNK protein (termed ATP7A) involved in copper
transport from the enterocytes to the blood (Vulpe et al., 1993).
The MNK cDNA shows similarities to a number of other Cu-
ATPases in bacteria (Solioz and Odermatt, 1995; Mandal et al.,
2002), yeast (Riggle and Kumamoto, 2000) and mammals
(Vulpe et al., 1993; Qian et al., 1998). The evolutionarily
conserved nature of this protein would suggest its presence in
fish, and support for this comes from the recent identification
of a partial cDNA homologue to the MNK protein in the Gulf
toadfish Opsanus beta(Grosell et al., 2001).

Under normal conditions, copper that enters cells from
the lumen is bound to intracellular metallochaperones,
resulting in intracellular ‘free’ copper levels as low as
10–18mol l–1 (1 attomole; Huffman and O’Halloran, 2000).
Metallochaperones traffic the metal to sites within the cell
where it is incorporated into cuproproteins (see reviews by
O’Halloran and Culotta, 2000; Puig and Thiele, 2002). An
example is the human metallochaperone, HAH1 (Klomp et al.,
1997), which delivers monovalent Cu [Cu(I)] to the Golgi
apparatus, where it donates Cu(I) to the MNK protein
(Huffman and O’Halloran, 2000). Cu(I) is transported via this
Cu-ATPase into the lumen of the Golgi. Vesicles containing
Cu(I) bud off the Golgi network and are redistributed to the
basolateral membrane where Cu(I) is secreted from the cell
(Petris et al., 1996; Francis et al., 1999). The MNK protein is
then recycled (Petris and Mercer, 1999). A similar trafficking
process is probably present in fish.

In the presence of excessive (possibly toxic) dietary levels,
copper is prevented from entering the body by retention in the
gut tissue bound to the small molecular mass cysteine-rich
proteins, i.e. metallothionein (MT) (Olsen et al., 1996).
Potentially, this MT-bound copper may then be excreted into
the faeces viasloughing of the epithelial membrane (Handy,
1996; Clearwater et al., 2000). 

Evidence for a Cu/anion symporter extrusion process in fish
intestine comes from experiments performed on isolated
everted gut sacs from the African walking catfish (Handy et
al., 2000). In these studies, applications of drugs designed to
inhibit P-type ATPases, vanadate (Cantely et al., 1978), and a
Cl–/HCO3– antiporter, DIDS, stimulated Cu transport from the
tissue to the serosal medium. At first the lack of inhibition by
vanadate appears puzzling, because the MNK protein is a P-
type ATPase. However, very little vanadate may have been in
contact with functional Cu-ATPases at the Golgi membrane
because of the slow movement of vanadate across the intestine
where the muscle layer is still intact (Handy et al., 2000),
and intracellular bioreactive vanadate concentrations may be
reduced due to chelation (Edel and Sabbioni, 1993). The
stimulation of copper efflux by this drug was proposed to be
due to a reduction in the transepithelial potential in the
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presence of vanadate. This resulted in a reduction in the
electrochemical gradient leading to enhanced copper
movement (Handy et al., 2000). The stimulation by DIDS was
proposed to be a consequence of the rise in intracellular
[Cl–] resulting from inhibition of the basolateral membrane
Cl–/HCO3– antiporter. This observation, along with the fact
that copper efflux reduction is coupled to a decrease in mucosal
[Cl–], suggests the presence of a basolateral Cu/Cl– symporter.
Metal ion/Cl– symporters have been observed in other cell
types (Torrubia and Garay, 1989; Alda and Garay, 1990; Endo
et al., 1998; Ödblom and Handy, 1999). This may be a novel
mechanism by which copper traverses vertebrate intestine,
and further research is required to determine the precise
mechanism(s) of teleost fish intestinal basolateral membrane
Cu extrusion.

Branchial copper uptake 

A recent paper by Grosell and Wood (2002) has identified
two branchial apical copper uptake processes, a sodium-
sensitive and a sodium-insensitive pathway. Both uptake
pathways showed saturation kinetics with similar low affinities
for Cu (Km 7.1 nmol l–1 for the sodium-sensitive and
9.5 nmol l–1 Cu for the sodium-insensitive pathways). The
sodium-sensitive copper uptake pathway was characterised by
an IC50 of 104µmol l–1 sodium, but copper uptake was not
completely inhibited in the presence of 20 mmol l–1 sodium. In
addition, the sodium-sensitive pathway was inhibited by the
drugs phenamil (an amiloride analogue that is an irreversible
inhibitor with high affinity to epithelial sodium channels,
ENaCs) (Kleymann and Cragoe, 1988) and bafilomycin A (a
proton pump inhibitor) (Drose and Altendorf, 1997). This
suggests that copper is entering via a putative ENaC.
Coincidently, the non-essential metal monovalent Ag [Ag(I)],
which has been shown to mimic Cu(I) in various transport
processes (Solioz and Odermatt, 1995; Havelaar et al., 1999;
Riggle and Kumamoto, 2000; Mandal et al., 2002) has also
been shown to enter fish via a sodium uptake pathway (Bury
and Wood, 1999). However, the biophysical characteristics of
known ENaCs show that they allow only the passage of Na+

and the smaller Li+ (Garty and Palmer, 1997). Consequently,
the proposition that apical copper or Ag(I) entry is via a
branchial Na+ channel (Bury and Wood, 1999), suggests that
the teleost ENaC possesses unique characteristics. 

The nature of the branchial sodium-insensitive copper
uptake pathway is unclear, but the identification of high-
affinity copper importers (the Ctr family of proteins) in
evolutionarily distinct organisms, such as yeast (Dancis et al.,
1994) and mammals (Zhou and Gitschier, 1997; Lee et al.,
2002) may provide clues. The human Ctr1 (hCtr1) has,
however, a much lower affinity (Km 1.71–2.54µmol l–1 Cu,
based on vector–cell transfection studies; Lee et al., 2002),
than the uptake of Cu across the fish gill (9.5 nmol l–1 Cu;
Grosell and Wood, 2002). The disparity may be simply
because the assays performed on fish were carried out in ion-
poor water where the copper is present almost exclusively
(90%) in the ionic form, whereas in cell culture conditions

copper will be bound to various components of the culture
medium (cf. Grosell and Wood, 2002). Re-examination of
apical Ag(I) uptake in rainbow trout suggests that there is also
a proportion of Ag(I) uptake that is sodium-insensitive (Bury
and Wood, 1999). A 260,000-fold excess of water Na+ could
not exclusively prevent branchial Ag(I) uptake. This may
suggest that Ag(I) and Cu(I) share both the sodium-sensitive
and sodium-insensitive uptake pathways. However, a 100-fold
excess of copper is required to prevent Ag(I) from entering
rainbow trout, which suggests that if this uptake pathway is
shared, it has a higher affinity for Ag(I) compared to copper
(Bury and Hogstrand, 2002).

Interestingly, the close relationship between copper and
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Fig. 2. (A) Inhibition of rainbow trout gill basolateral membrane
vesicle (BLMV) Ag(I) transport at 50µmol l–1 AgNO3 by
500µmol l–1 of non-radioactive Ag(I), Cu(II), Pb(II), Cd(II), Zn(II)
and Fe(III). Values are means ±S.E.M., numbers indicate Nvalues.
Asterisks indicate significant differences from control values
(Student t-test performed on arcsine transformed data, P<0.05).
(B) Concentration-dependent Ag(I) transport (solid circles), and in
the presence of 800µmol l–1 Cu(II) (open circles). Values are means
± S.E.M., N=6, taken from two separate experiments. Both sets of data
best-fitted a sigmoidal curve with regression equations: for the
control vesicle Ag(I) transport, y=3.5±2.1/(1+e–(x–15.1±3/17.5±2.4)),
r2=0.992; for Ag(I) transport in Cu(II)-treated vesicles,
y=9.8±1.6/(1+e–(x–17.4±2.9/6.4±3.5)), r2=0.993. The Cu(II)-treated
vesicle Ag(I) transport is significantly reduced (two-way analysis of
variance, P=0.0052). The protocol for BLMV preparation and
transport buffer media were taken from Bury et al. (1999). 
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silver uptake is also seen with hCtr1, where copper uptake is
significantly blocked by Ag(I) (Lee et al., 2002). This implies
that copper is entering viathe hCtr1 in the monovalent form.
Copper is predominantly found as the Cu(II) valency in water.
Thus, to enter viaa putative Na+-channel or Ctr carrier, Cu(II)
must be reduced to Cu(I). The presence of a copper-reductase
on the gills of fish however, has not been shown. 

Branchial basolateral copper extrusion occurs viaa carrier
mediated process (Grosell et al., 1997; Campbell et al., 1999).
Using an in situperfused head technique, Campbell and
coworkers demonstrated second-order reaction kinetics for the
movement of copper from the gills of rainbow trout into the
perfusate. This copper transport was inhibited by vanadate,
suggesting the involvement of a P-type ATPase. The concern
over whether vanadate is bioreactive within the cell (see
Intestinal copper uptake, above, for details) means it is unclear

whether this active branchial copper ATPase is resident at the
Golgi (i.e. akin to the MNK protein) or at the basolateral
membrane. However, a Ag(I)stimulated ATPase has been
identified in basolateral membrane vesicles (BLMV) prepared
from the gills of rainbow trout (Bury et al., 1999). Inhibition
studies of BLMV Ag(I) uptake by various metals (Cu, Pb, Cd,
Zn, Fe) show that copper is the only antagonist (Fig. 2A). This
is further verified by the inhibition of dose-dependent BLMV
Ag(I) uptake by copper (Fig. 2B). The inference from these
studies is that the fish gill basolateral membrane Ag(I)
transporter (Bury et al., 1999) is in fact a Cu(I) P-type ATPase,
and Ag(I) may simply be mimicking Cu(I). Considering that
there is only partial contamination of fish gill BLMV with the
Golgi membrane marker thiamine pyrophosphatase (Perry and
Flik, 1988) this would argue against the possibility of Ag(I)
mimicking Cu(I) for transport viaa MNK ATPase residing in
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the trans-Golgi network, and it may be possible that a teleost
MNK-‘like’ protein is functional at the basolateral membrane.

Fig. 3 combines information for both the branchial and
intestinal uptake routes described above, and represents the
generic epithelial copper uptake pathways in teleost fish. 

Zinc
Zinc is essential due to its vital structural and/or catalytic

importance in more than 300 proteins that play important
roles in piscine growth, reproduction, development, vision and
immune function (Watanabe et al., 1997). Consequently for
fish, of the essential metals, zinc is second in quantitative
importance only to iron (Watanabe et al., 1997). Dietary zinc
requirements range between 230–460µmol (15–30 mg)
kg–1dry mass of diet (Ogino and Yang, 1978; Gatlin and
Wilson, 1983). 

The ubiquity of zinc is governed by its ability to form a wide
range of coordination geometries, allowing it to interact with
a wide range of cellular entities (Vallee and Falchuk, 1993;
McCall et al., 2000). Furthermore zinc is redox inert, enabling
the formation of relatively stable associations within
the cellular environment (Vallee and Falchuk, 1993).
Consequently, in contrast to copper and iron, zinc does not
form free radical ions, and in fact has antioxidant properties
(Powell, 2000). Zinc may, however, generate toxicity to fish
by interfering with calcium homeostasis (Spry and Wood,
1985; Hogstrand and Wood, 1996). 

Teleost fish zinc homeostasis

At both organismal and cellular levels zinc status is tightly
controlled. Surplus zinc is either excreted viathe bile, intestinal
sloughing (Handy, 1996) or the gills (Hardy et al., 1987),
whilst urinary loss of zinc in fish is minimal (Spry and Wood,
1985). Even though it has been proposed that excretion is the
main means by which fish control body zinc homeostasis
(Shears and Fletcher, 1983; Hardy et al., 1987), they are also
able to regulate zinc acquisition. The proportion of zinc
absorbed from the diet decreases as the dietary zinc load
increases (Shears and Fletcher, 1983; Hardy et al., 1987;
Glover and Hogstrand, 2002b), suggesting the presence of a
mechanism for regulating uptake of dietary zinc. Branchial
zinc accumulation is also regulated, and rainbow trout exposed
to elevated waterborne zinc levels show alterations in zinc
uptake mechanisms that limit the amount of zinc accumulating
on the gill (see Branchial zinc uptake; Hogstrand et al., 1994,
1995, 1996, 1998). In a similar way, mammals adjust zinc
absorption and endogenous intestinal zinc excretion to
maintain zinc status (King et al., 2000).

Branchial versusintestinal zinc uptake

The major routes of zinc assimilation in fish are the gills and
the gut. The relative importance of these routes has been the
focus of much research in both marine (e.g. Pentreath, 1973;
Renfro et al., 1975; Milner, 1982; Willis and Sunda, 1984) and
freshwater fish (Spry et al., 1988). The consensus is that the

gut is the dominant pathway of absorption in the natural
environment. With decreasing dietary zinc levels, however, the
gill may become increasingly important, especially when
waterborne zinc levels are elevated (Spry et al., 1988). Hence
the intestine appears to act as the bulk pathway for uptake,
whereas the gills may act to supplement absorption when
required. 

The relative zinc uptake affinities and capacities of gill and
gut appear to confirm this scenario in freshwater rainbow trout.
The affinity (Km) for branchial zinc uptake lies between 3.6
and 7.9µmol l–1 (Spry and Wood, 1989; Hogstrand et al.,
1998). The corresponding constant for the intestine is
309µmol l–1 (Glover and Hogstrand, 2002b), indicating a
lesser affinity for zinc. However the gut appears to have a
much greater capacity for zinc uptake with a maximal rate
(Jmax) of 933 nmol kg–1h–1 (Glover and Hogstrand, 2002b),
compared to 240–410 nmol kg–1h–1 for the gill (Spry and
Wood, 1989; Hogstrand et al., 1998). Interestingly, the
unicellular organism yeast has been demonstrated to have
independently regulated high- and low-affinity zinc
transporters (Zhao and Eide, 1996a,b), a cellular equivalent of
the organ-level patterns observed in fish. 

Intestinal zinc uptake

In general, the site of gastrointestinal zinc absorption
appears conserved between fish and mammals. Pentreath
(1976) and Shears and Fletcher (1983) determined that the
anterior intestine was the most important region for zinc
absorption in winter flounder Pseudopleuronectes americanus
and plaice Pleuronectes platessa, respectively. This is
consistent with the scenario in human intestine, which exhibits
a jejunal-biased absorptive pattern (Lee et al., 1989).

Shears and Fletcher (1983) described two components of
uptake in winter flounder. One saturable component dominated
at low zinc levels, with a diffusive pathway more dominant at
higher zinc concentrations. This mimics the mechanism of zinc
uptake in mammals (Lönnerdal, 1989). However, in freshwater
rainbow trout, only a saturable component of uptake was
discerned using an in vivoperfusion technique (Glover and
Hogstrand, 2002b). It was proposed that any potential diffusive
uptake pathway was blocked as a consequence of increased
epithelial mucus secretion in intestine perfused with high zinc
concentrations (Glover and Hogstrand, 2002b). In contrast, at
low zinc levels, mucus may in fact enhance zinc uptake by
trapping zinc close to the epithelial surface, and potentially
increasing bioavailability (Powell et al., 1999a). But, at
environmentally relevant intestinal zinc concentrations (i.e. up
to approx. 50µmol l–1; Turner and Olsen, 2000; Farag et al.,
2000), any diffusive component of zinc uptake is unlikely to
be of importance for nutritive zinc uptake. 

The apical entry steps in fish intestinal zinc absorption
have not been elucidated. In recent years the molecular
characterisation of zinc metal importers from evolutionary
diverse organisms (yeast, plants and mammals) has been
achieved (Zhao and Eide, 1996a,b; Grotz et al., 1998; Gaither
and Eide, 2001a), and these proteins form the large ZIP family
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of transporters (derived from Zrt, Irt-like proteins; Lioumi et
al., 1999). It is highly likely that teleosts possess ZIP
homologues. An alternative candidate for intestinal apical zinc
absorption has recently been identified by Cragg et al. (2002)
termed hZTL, and is related to the zinc transporter (ZnT-1)
involved in zinc export described below. 

A number of small molecular mass ligands in the enterocyte
cytoplasm may modulate piscine zinc uptake. A role for
metallothionein (MT) in cellular zinc uptake and metabolism
has been proposed (Shears and Fletcher, 1979, 1983, 1984),
and evidence from mammalian systems suggests that MT
functions in nutritive uptake in zinc-deficient animals (Hoadley
et al., 1988; Coyle et al., 2000). In addition, glutathione also
has an important role in zinc uptake (Jiang et al., 1998), and
the presence of zinc bound to low molecular mass ligands
following dietary zinc exposure has been noted in freshwater
rainbow trout (Spry et al., 1988). The sequestering molecules
such as MT and glutathione act to maintain intracellular ‘free’
zinc (Zn2+) concentrations in the femtomolar range (Outten
and O’Halloran, 2001).

Recently, Glover et al. (2002) have showed that intestinal
basolateral transfer of zinc is viaa saturable pathway in the
Gulf toadfish. This contrasts to the finding of Shears and
Fletcher (1983) that demonstrated a passive movement of zinc
across the winter flounder intestine. A facilitated zinc export
process in fish is supported by the cloning of a full-length
cDNA in the puffer fish Fugu ribrepeswith amino acid
sequence similarities to the Zinc transporter-1 (ZnT-1) protein
of mammals (Balesaria and Hogstrand, 2001). ZnT-1 is
localised to the basolateral membrane of enterocytes and is
involved in the export of zinc from the intestine into the blood
stream (Cousins and McMahon, 2000). Whether the piscine
ZnT1 is involved in the regulation of zinc uptake awaits
verification. 

Aquaculture studies have tended to focus more on endpoints
of zinc uptake (i.e. growth) rather than on the mechanism of
uptake. These studies, however, have provided interesting
information from a mechanistic perspective. In particular, the
chemical form of zinc added to diets has been the focus of a
number of investigations. Some authors describe enhanced

body zinc status with amino acid
chelates (Hardy et al., 1987;
Paripatananont and Lovell, 1995;
Apines et al., 2001), whereas others
report no effect (Li and Robinson,
1996). Amino acids with high
affinity for zinc enhance
bioavailability, and physiological
studies have shown that histidine
and cysteine may increase zinc
acquisition, probably via specific
uptake pathways related to the
formation of bis complexes with
zinc [Zn(His)2, Zn(Cys)22–; Glover
and Hogstrand, 2002a]. In addition,
the chelation of zinc by amino acids
may, by altering the distribution of
internal zinc, have nutritional
benefits (Glover and Hogstrand,
2002a). 

Branchial zinc uptake 

The mechanism of freshwater
branchial zinc uptake is now well
understood. Many investigations
have shown that hardness (i.e. water
[Ca2+]) offers a protective effect
against waterborne zinc toxicity
(e.g. Eisler, 1993). The relationship
between calcium and zinc
homeostasis is also apparent at the
branchial apical uptake step.
Numerous studies have shown that
calcium inhibits branchial zinc
uptake (Spry and Wood, 1989;
Bentley, 1992; Hogstrand et al.,
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1996), and correspondingly, that zinc competes with calcium
uptake. Injection of stanniocalcin, a hypocalcaemic hormone
in fish (Wagner et al., 1986), downregulates both calcium (Flik
et al., 1993) and zinc uptake from the water in rainbow trout
(Hogstrand et al., 1996). In addition, lanthanum, a calcium
channel blocker, also inhibits both calcium (Perry and Flik,
1988) and zinc uptake (Hogstrand et al., 1996). Calcium has
also been observed to compete for zinc uptake via a channel
present in the brush border membrane of the pig intestine
(Bertolo et al., 2001). It would thus appear that zinc uptake
occurs via a lanthanum-sensitive Ca2+-channel, which has been
located in the branchial chloride cells (Perry and Flik, 1988).
It is of interest that another essential metal, cobalt, has also
been shown to enter carp Cyprinus carpiogills via a Ca2+-
channel (Comhaire et al., 1994), suggesting that this channel
may discriminate between various divalent cations. It is likely,
however, that alternative zinc uptake pathways across the
apical surface exist, and interestingly, the affinity constant of
in vitro zinc transport by ZIPs (see Intestinal zinc uptake)
(apparent Km=3–3.5µmol l–1; Gaither and Eide, 2001b)
corresponds closely to that determined for teleost freshwater
fish gill uptake (3.7µmol l–1; Hogstrand et al., 1995). 

The generic cellular zinc uptake pathways in epithelial cells
of teleost fish is given in Fig. 4. 

Conclusions
The mechanism of branchial metal uptake in marine fish has

received little attention. The tendency for decreased metal
bioavailability to the gill in marine environments (Rainbow,
1995), and the fact that marine fish could imbibe waterborne
metal to compensate for any dietary deficiency, suggests that
gastrointestinal uptake is likely to dominate nutritive metal
uptake in seawater. Nevertheless, given the vastly different
branchial physiology in marine fish, examination of branchial
metal uptake would be of considerable interest. Investigations
in the marine bivalve Mytilus edulissuggest that calcium has
a significant influence on branchial zinc uptake (Vercauteren
and Blust, 1999). Copper has been shown to influence
branchial enzymes in the seawater-adapted European flounder
following waterborne exposure (Stagg and Shuttleworth,
1982), but is unclear whether the source of this branchial
copper is from the water or diet. Cu/Ca ratios in the otoliths of
juvenile barramundi Lates calcarifercorrelate with the water
ratios and not the dietary ratios of these divalent cations
(Milton and Chenery, 2001), suggesting that Cu laid down in
the otolith originates from the sea. Cloning of a putative Cu-
ATPase in the marine Gulf toadfish suggests that the molecular
machinery for marine metal uptake across the gills is present
(Grosell et al., 2001). However, future research is thus required
to determine whether nutritive metals are taken up from the sea
via the gills of teleost fish, the transport proteins involved in
this acquisition process, and whether this route of uptake
contributes significantly to metal homeostasis. 

The presence of teleost fish homologues of metal
transporters (DMT1, ferroportin, Cu-ATPase and ZnT-1)

suggests an evolutionarily conserved mechanism of nutrient
metal uptake. The development and utilisation of molecular
techniques that are currently being applied in mammalian
systems should facilitate functional characterisation of the
uptake process in fish. In addition, novel piscine uptake
processes (i.e. Cu+/2+/Cl– symporter; a putative Cu/Na
epithelial sodium channel) may provide insights into
alternative transport mechanisms of these metals in other
vertebrates.

Rainbow trout BLMV studies were funded by a University
Fellowship, University of Exeter, and a Fisheries Society of
the British Isles research grant awarded to N.R.B. C.N.G. was
supported by the Society of Environment Toxicology and
Chemistry (SETAC) Doctoral Fellowship, sponsored by
Proctor & Gamble Company. 
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