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Fig. 12. Peanut lectin binds to the MrSSxlO3 component (arrow). (A) Posterior
membranes; (B) anterior membranes.

neurites. The inhibitory components have been characterized as two proteins of
MT35xl(P and 250 xlO3 by monoclonal antibodies and were shown to be part of
the CNS myelin. Both components are probably different from the Mr33xl6i

component described in this presentation, for two reasons. First, both components
are myelin-associated. Myelin does not occur in the source of the MT33xl(fi
component, because chick tecta and chick brains are not myelinated up to
embryonic day E10. Second, the monoclonal antibody IN-1 isolated by Caroni and
Schwab does not inactivate the repellent activity in the stripe assay (P. Caroni and
M. E. Schwab, unpublished results).

Recently, Davies et al. (1990) have identified two glycoproteins (Mr55xl03 and
48X103) which are found in the posterior and not in the anterior halves of
sclerotomes and which seemingly have an inhibitory or repellent activity on
growth of motor and sensory axons and on neural crest migration. These
glycoproteins cause growth cones of dorsal root ganglia to collapse. These results
are analogous to the findings with the AffSSxlO3 protein.

Raper and Kapfhammer (1990) have described a collapse-inducing activity
derived from chick brain. The molecular weight has not yet been determined. In
contrast to the activity described here, this collapse-inducing activity is destroyed
by high concentrations of urea. This may be taken as an indication that this
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Fig. 13. Age-dependent expression of the AT^xlC)3 glycoprotein (arrows). Immuno-
blots: (A) embryonic day 9, (B) embryonic day 15.
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Fig. 14. PI-PLC sensitivity of the A/fSSxlO3 protein. Immunoblots: (A) reconstituted
membrane proteins before treatment with PI-PLC; (B) membrane pellet after 60min
incubation with PI-PLC; (C) supernatant after 5 min incubation with PI-PLC.

molecule is different from the MT 33xlO3 component. However, more exper-
iments are needed to confirm this conjecture.

Relationship between axonal guidance and growth-cone collapse
The finding that one and the same molecule is involved in two different
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phenomena suggests that the two phenomena are related and have a common
denominator. What is the relationship between guidance and growth-cone
collapse? What is the basic mechanism? The answer is not known. Two hypotheses
have been discussed in a review quite recently (J. Walter, T. E. Allsopp and
F. Bonhoeffer, in preparation) and will be mentioned here only very briefly.

In the model of axonal guidance suggested by Gierer (1987) the growth cone is a
structure which is extremely sensitive to very slight concentration differences
between its edges. The high degree of sensitivity is needed to explain guidance by
an external gradient. Such a gradient normally has a spatial extension which is
large compared to the dimensions of the growth cone. Therefore, concentration
differences between the two margins of the growth cones are very small. In this
model, the slight external gradient is converted to an internal gradient which is
amplified by an autocatalytic process. The growth cone reacts only to concen-
tration differences, i.e. to gradients. In this guidance model, collapse is in-
terpreted as an over-reaction of the growth cone to sudden and strong changes in
concentration of the guiding substance that occur when membranes are added to
growing axons (J. Walter, T. E. Allsopp and F. Bonhoeffer, in preparation).

In the other model, collapse is seen as the basic phenomenon of guidance.
Induced collapse and the accompanying processes, such as loss of adhesion,
reorganization or destruction of the cytoskeletal structure and the resulting
paralysis, are assumed to be transient and very local within the growth cone. It is
suggested that these local phenomena direct the growth of the axon. Besides the
local collapse-inducing or paralysing activity this model requires a habituation
phenomenon in order to allow guidance of axons in the presence of high
concentrations of a repellent guiding molecule (J. Walter, T. E. Allsopp and
F. Bonhoeffer, in preparation).

To understand axonal guidance we will have to collect more information about
the various components involved, about the receptor of the guiding signals, the
role played by second messenger systems, their interaction with the cytoskeleton
and its motility. Today we are still very far from understanding how axons are
guided to their target.
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