Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
ARTICLES
The Effect of Air Resistance on the Jumping Performance of Insects
H. C. BENNET-CLARK, G. M. ALDER
Journal of Experimental Biology 1979 82: 105-121;
H. C. BENNET-CLARK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. M. ALDER
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

A spring gun was constructed to propel objects at known velocities of between 1 and 4.5 m.s−1. This was used to project insects and various models in a vertical trajectory. By comparing the height attained in air by the insects or models with the height theoretically possible in vacuo, the energy lost against air resistance was observed. Small insects have a higher frontal area to mass ratio than larger ones so have relatively more aerodynamic drag and attain lower heights.

The observed effect may be expressed in terms of the drag coefficient, CD. Fleas and locusts have CD of about 1 Winged flies have CD of about 1.5 which falls to about 1 when the wings are amputated and to about o-8 when the legs are amputated. Aptery is advantageous in jumping insects.

From experiments with models, it appears that the optimal condition for small jumping insects is that the body should be as compact as possible to reduce the frontal area to mass ratio. Thus dense spherical bodies are favoured. Some species of jumping insect have densities of about 1 mg.mm−3 while some flying beetles and flies have densities between 0.3 and 0.8 mg.mm−3.

The Reynolds number at which the experiments were performed was from 65–205 for fleas up to 740-2340 for locusts. The models operated in similar ranges.

At a velocity which would propel a larger animal to a height of 1 m, fleas weighing 0.4 mg only reach about 0.4 m. At lower initial velocities, proportionately less energy is wasted against air resistance so the jump efficiency is higher. Most fleas jump to a height of about 0.1 m with an efficiency of 0.8 while locusts jump to a height of 0.35 m with an efficiency of over 0.9. Air resistance is thus an important scale effect in jumping insects and provides its own design constraints.

  • © 1979 by Company of Biologists
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Effect of Air Resistance on the Jumping Performance of Insects
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
ARTICLES
The Effect of Air Resistance on the Jumping Performance of Insects
H. C. BENNET-CLARK, G. M. ALDER
Journal of Experimental Biology 1979 82: 105-121;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
ARTICLES
The Effect of Air Resistance on the Jumping Performance of Insects
H. C. BENNET-CLARK, G. M. ALDER
Journal of Experimental Biology 1979 82: 105-121;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Properties and modulation of cardiac calcium channels
  • Phorbol esters, protein phosphorylation and the regulation of neuronal ion channels
  • Properties and roles of the three subclasses of histamine receptors in brain
Show more Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Welcome to JEB’s new Editor Monica Daley

We are pleased to welcome Monica Daley to JEB’s Editorial team. Monica has had a long association with JEB before taking up her new role, overseeing peer review of neuromuscular physiology, terrestrial biomechanics and integrative physiology of locomotion.


In the field with Robyn Hetem

Continuing our fieldwork series, Robyn Hetem reflects on working with species ranging from aardvark to zebra, and the impact COVID-19 has had on fieldwork.


Read & Publish participation continues to grow

“It is particularly encouraging for early career researchers, as it allows them to display their research globally without the need to find costs to cover the open access option.”

Professor Fernando Montealegre-Z (University of Lincoln) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Nocturnal reef residents have deep-sea-like eyes

Fanny de Busserolles and colleagues from The University of Queensland have discovered that the eyes of nocturnal reef fish have multibank retinas, layers of photoreceptors, similar to the eyes of deep-sea fish that live in dim light conditions.


Mechanisms underlying gut microbiota–host interactions in insects

In their Review, Konstantin Schmidt and Philipp Engel summarise recent findings about the mechanisms involved in gut colonisation and the provisioning of beneficial effects in gut microbiota–insect symbiosis.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992