Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
Articles
Physiological Basis for Detection of Sound and Vibration in Snakes
PETER H. HARTLINE
Journal of Experimental Biology 1971 54: 349-371;
PETER H. HARTLINE
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

1. Snakes possess two sensory systems which respond to both air-borne sound and infstrate vibration as shown by extracellular slow evoked potentials recorded in the midbrain. One involves the VIII cranial nerve and inner ear (designated ‘auditory system’); the other requires an intact spinal cord and probably originates in skin mechanoreceptors (designated ‘somatic system’).

2. In species of the families Colubridae, Crotalidae, Boidae, the auditory system has a typical U-shaped frequency-threshold curve, similar to those found in other animals, but restricted to a narrow frequency range, c.150 Hz to 600 Hz. The U-shaped curve has a distinct minimum threshold or best frequency. Frequency-threshold curves for sound and head vibration have only minor differences.

3. The auditory system is not remarkably sensitive to sound. It is about 20 dB less sensitive than the human auditory system for air-borne sound between 200 and 400 Hz. It is remarkably sensitive to head vibration: at the best frequency, 1 Å peak-to-peak amplitude is suprathreshold.

4. The auditory system responds not only to stimuli at the head but to sound and vibration delivered to the body alone. Responses to body stimulation by sound are caused by the same sensory end-organ that responds to head vibration. The role of the body in picking up sound for the auditory system can be infstantial; thus the lung plays an important part in snake hearing, a novel situation among land vertebrates.

5. The somatic system is not as sensitive to sound or to vibration as is the auditory system over most of the latter's frequency range. The somatic system has a relatively flat frequency-threshold curve which lacks a distinct best frequency. The frequency range extends both above and below the range of the auditory system, 50-1000 Hz. The somatic system is insensitive to vibration of the head.

6. Evoked slow potentials fail to show that either spinal or auditory system distinguishes between vibratory energy from the air and from the infstrate. It is proposed that intensity information from the auditory system could be compared by the snake's brain with intensity information from the snake's somatic system in order to determine the relative amounts of air-borne sound and infstrate vibration in an unknown natural stimulus.

  • Copyright © 1971 The Company of Biologists Ltd.
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Physiological Basis for Detection of Sound and Vibration in Snakes
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Articles
Physiological Basis for Detection of Sound and Vibration in Snakes
PETER H. HARTLINE
Journal of Experimental Biology 1971 54: 349-371;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Articles
Physiological Basis for Detection of Sound and Vibration in Snakes
PETER H. HARTLINE
Journal of Experimental Biology 1971 54: 349-371;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Cell surface glycoconjugates and carbohydrate-binding proteins: possible recognition signals in sensory neurone development
  • Ionic channels and hormone release from peptidergic nerve terminals
  • Amino acid receptor-mediated transmission at primary afferent synapses in rat spinal cord
Show more Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Welcome to JEB’s new Editor Monica Daley

We are pleased to welcome Monica Daley to JEB’s Editorial team. Monica has had a long association with JEB before taking up her new role, overseeing peer review of neuromuscular physiology, terrestrial biomechanics and integrative physiology of locomotion.


In the field with Robyn Hetem

Continuing our fieldwork series, Robyn Hetem reflects on working with species ranging from aardvark to zebra, and the impact COVID-19 has had on fieldwork.


Read & Publish participation continues to grow

“It is particularly encouraging for early career researchers, as it allows them to display their research globally without the need to find costs to cover the open access option.”

Professor Fernando Montealegre-Z (University of Lincoln) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Nocturnal reef residents have deep-sea-like eyes

Fanny de Busserolles and colleagues from The University of Queensland have discovered that the eyes of nocturnal reef fish have multibank retinas, layers of photoreceptors, similar to the eyes of deep-sea fish that live in dim light conditions.


Mechanisms underlying gut microbiota–host interactions in insects

In their Review, Konstantin Schmidt and Philipp Engel summarise recent findings about the mechanisms involved in gut colonisation and the provisioning of beneficial effects in gut microbiota–insect symbiosis.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992