Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
Articles
The Behaviour of Barnacle Cyprids in Relation to Water Movement over a Surface
D. J. CRISP
Journal of Experimental Biology 1955 32: 569-590;
D. J. CRISP
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

1. The velocity gradient of the fluid close to the solid boundary is the most appropriate description of the conditions of water flow which affect the attachment of the larvae of sessile forms to solid objects. The nominal speed of the water movement past the object is of importance only in so far as it influences the velocity gradient in the boundary layer.

2. Experiments in glass tubes on cypris larvae of Elminius modestus and Balanus balanoides show that moderate velocity gradients exceeding 500 sec.-1 sweep the cyprids past the surface before they can attach. For large objects exposed to turbulent flow, the critical velocity gradient corresponds very approximately to a flow of 1-2 knots.

3. Attachment under conditions of water flow is accompanied by negative rheotaxy, and can occur equally in the light and in the dark.

4. Maximum attachment occurs at or below velocity gradients just great enough for the cyprid to be able to maintain position by swimming along the surface against the current.

5. Once the cyprid has attached it cannot be pulled off the surface even by gradients greatly in excess of those which prevent attachment.

6. Cyprids can migrate in all directions when exposed to moderate gradients, but they do so only with difficulty when the velocity gradient is high, particularly if the water is flowing in the same direction as that in which the cyprids are walking. The direction in which the cyprid migrates is altered only momentarily by changes in the direction of the current, the animal actively resisting the redistribution of forces acting on it.

7. No direct evidence is given in this paper on the influence of water currents on fixation, but a critical comparison with other published work suggests that fixation can occur in places where the velocity gradients are greater than those which limit attachment, provided the cypris is able to migrate there after attachment.

8. Moderate velocity gradients have little effect on the orientation at metamorphosis. Individuals tend to settle with the anterior end pointing downstream rather than in any other position. This orientation is the opposite from that which would be expected if the cyprid were passively orientated by the water current, but is likely to make subsequent feeding more efficient.

9. The ability to attach under conditions of water flow, and the tendency not to attach under stagnant conditions, may have an important influence on the animals' distribution and survival.

10. Solid particles in suspension may profoundly influence the behaviour, hence the results given in this paper may not be relevant to conditions where scouring takes place.

  • Copyright © 1955 The Company of Biologists Ltd.
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Behaviour of Barnacle Cyprids in Relation to Water Movement over a Surface
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Articles
The Behaviour of Barnacle Cyprids in Relation to Water Movement over a Surface
D. J. CRISP
Journal of Experimental Biology 1955 32: 569-590;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Articles
The Behaviour of Barnacle Cyprids in Relation to Water Movement over a Surface
D. J. CRISP
Journal of Experimental Biology 1955 32: 569-590;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Slow synaptic transmission in frog sympathetic ganglia
  • Physiological Modulation of Gap Junction Permeability
  • Modulation of the serotonin-sensitive potassium channel in Aplysia sensory neurone cell body and growth cone
Show more Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Predicting the Future: Species Survival in a Changing World

Read our new special issue exploring the significant role of experimental biology in assessing and predicting the susceptibility or resilience of species to future, human-induced environmental change.


Adam Hardy wins the 2020 Journal of Experimental Biology Outstanding Paper Prize

Congratulations to winner Adam Hardy for his work showing that goby fins are as touch sensitive as primate fingertips. Read Adam’s paper and find out more about the 12 papers nominated for the award.


Stark trade-offs and elegant solutions in arthropod visual systems

Many elegant eye specializations that evolved in response to visual challenges continue to be discovered. A new Review by Meece et al. summarises exciting solutions evolved by insects and other arthropods in response to specific visual challenges.


Head bobbing gives pigeons a sense of perspective

Pigeons might look goofy with their head-bobbing walk, but it turns out that the ungainly head manoeuvre allows the birds to judge distance.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992