ABSTRACT
Vision is one of the most important senses for humans and animals alike. Diverse elegant specializations have evolved among insects and other arthropods in response to specific visual challenges and ecological needs. These specializations are the subject of this Review, and they are best understood in light of the physical limitations of vision. For example, to achieve high spatial resolution, fine sampling in different directions is necessary, as demonstrated by the well-studied large eyes of dragonflies. However, it has recently been shown that a comparatively tiny robber fly (Holcocephala) has similarly high visual resolution in the frontal visual field, despite their eyes being a fraction of the size of those of dragonflies. Other visual specializations in arthropods include the ability to discern colors, which relies on parallel inputs that are tuned to spectral content. Color vision is important for detection of objects such as mates, flowers and oviposition sites, and is particularly well developed in butterflies, stomatopods and jumping spiders. Analogous to color vision, the visual systems of many arthropods are specialized for the detection of polarized light, which in addition to communication with conspecifics, can be used for orientation and navigation. For vision in low light, optical superposition compound eyes perform particularly well. Other modifications to maximize photon capture involve large lenses, stout photoreceptors and, as has been suggested for nocturnal bees, the neural pooling of information. Extreme adaptations even allow insects to see colors at very low light levels or to navigate using the Milky Way.
Footnotes
Competing interests
The authors declare no competing or financial interests.
Funding
This research was supported by the National Science Foundation under grant IOS-1856241.
- © 2021. Published by The Company of Biologists Ltd
Log in using your username and password
Log in through your institution
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$30.00 .
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.