ABSTRACT
Mantis shrimp strikes are one of the fastest animal movements, despite their occurrence in a water medium with viscous drag. Since the strike is produced by a latch-mediated spring-actuated system and not directly driven by muscle action, we predicted that strikes performed in air would be faster than underwater as a result of reduction in the medium's drag. Using high-speed video analysis of stereotyped strikes elicited from Squilla mantis, we found the exact opposite: strikes are much slower and less powerful in air than in water. S. mantis strikes in air have a similar mass and performance to latch-mediated spring-actuated jumps in locusts, suggesting a potential threshold for the energetics of a 1–2 g limb rotating in air. Drag forces induced by the media may be a key feature in the evolution of mantis shrimp strikes and provide a potential target for probing the braking system of these extremely fast movements.
Footnotes
Competing interests
The authors declare no competing or financial interests.
Author contributions
Conceptualization: K.D.F., G.P.S., P.T.G.-B.; Methodology: K.D.F., G.P.S.; Software: K.D.F.; Validation: K.D.F.; Formal analysis: K.D.F., G.P.S.; Investigation: K.D.F.; Resources: K.D.F., P.T.G.-B.; Data curation: K.D.F.; Writing - original draft: K.D.F., G.P.S.; Writing - review & editing: K.D.F., G.P.S., P.T.G.-B.; Visualization: K.D.F.; Supervision: P.T.G.-B.; Project administration: K.D.F.; Funding acquisition: K.D.F., P.T.G.-B.
Funding
This work and K.D.F. were supported by a Marie Sklodowska-Curie Independent Postdoctoral Research Fellowship distributed by the European Commission, MSCA-IF Project: EYEPOD 702238. K.D.F. was also supported by funding from the University of Minnesota College of Biological Sciences.
Supplementary information
Supplementary information available online at http://jeb.biologists.org/lookup/doi/10.1242/jeb.208678.supplemental
- Received June 17, 2019.
- Accepted January 16, 2020.
- © 2020. Published by The Company of Biologists Ltd