ABSTRACT
An adaptive visual system is essential for organisms inhabiting new or changing light environments. The Panama Canal exhibits such variable environments owing to its anthropogenic origin and current human activities. Within the Panama Canal, Lake Gatun harbors several exotic fish species including the invasive peacock bass (Cichla monoculus), a predatory Amazonian cichlid. In this research, through spectral measurements and molecular and physiological experiments, we studied the visual system of C. monoculus and its adaptive capabilities. Our results suggest that (1) Lake Gatun is a highly variable environment, where light transmission changes throughout the canal waterway, and that (2) C. monoculus has several visual adaptations suited for this red-shifted light environment. Cichla monoculus filters short wavelengths (∼400 nm) from the environment through its ocular media and tunes its visual sensitivities to the available light through opsin gene expression. More importantly, based on shifts in spectral sensitivities of photoreceptors alone, and on transcriptome analysis, C. monoculus exhibits extreme intraspecific variation in the use of vitamin A1/A2 chromophore in their photoreceptors. Fish living in turbid water had higher proportions of vitamin A2, shifting sensitivities to longer wavelengths, than fish living in clear water. Furthermore, we also found variation in retinal transcriptomes, where fish from turbid and clear waters exhibited differentially expressed genes that vary greatly in their function. We suggest that this phenotypic plasticity has been key in the invasion success of C. monoculus.
FOOTNOTES
Competing interests
The authors declare no competing or financial interests.
Author contributions
Conceptualization: D.E., M.E.P., V.F., D.M.S., K.L.C.; Methodology: D.E., M.E.P., V.F., E.R., C.M., K.L.C.; Software: D.E., M.E.P., E.R., C.M., K.L.C.; Validation: D.E., D.M.S., K.L.C.; Formal analysis: D.E., K.L.C.; Investigation: D.E., M.E.P., V.F., D.M.S., K.L.C.; Resources: M.E.P., K.L.C.; Data curation: D.E., M.E.P., V.F., E.R., C.M., K.L.C.; Writing - original draft: D.E., K.L.C.; Writing - review & editing: D.E., M.E.P., V.F., D.M.S., K.L.C.; Visualization: D.E., K.L.C.; Supervision: D.E., D.M.S., K.L.C.; Project administration: K.L.C.; Funding acquisition: K.L.C.
Funding
This work was funded by the National Institutes of Health (R01EY024693 to K.L.C.) and by the partnership program between the University of Maryland and Eberhard Karls Universität Tübingen for the joint course of animal communication. D.E.-C. is supported by a graduate fellowship of the Secretariat of Higher Education, Science, Technology and Innovation of Ecuador (Secretaría de Educación Superior, Ciencia, Tecnología e Innovación) (2014-AR2Q4465 to D.E.-C.). Deposited in PMC for release after 12 months.
Data availability
DNA sequences and transcriptome libraries are available from GenBank (accession nos: MK562367–MK562373, MK568303–MK568308) and the SRA database (SRR8643940–SRR8643946).
Supplementary information
Supplementary information available online at http://jeb.biologists.org/lookup/doi/10.1242/jeb.188300.supplemental
- Received July 10, 2018.
- Accepted February 10, 2019.
- © 2019. Published by The Company of Biologists Ltd