Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
Research Article
Swimming strategies and energetics of endothermic white sharks during foraging
Yuuki Y. Watanabe, Nicholas L. Payne, Jayson M. Semmens, Andrew Fox, Charlie Huveneers
Journal of Experimental Biology 2019 222: jeb185603 doi: 10.1242/jeb.185603 Published 18 February 2019
Yuuki Y. Watanabe
1National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan
2SOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo 190-8518, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yuuki Y. Watanabe
  • For correspondence: watanabe.yuuki@nipr.ac.jp
Nicholas L. Payne
3University of Roehampton, Holybourne Avenue, London SW15 4JD, UK
4Trinity College Dublin, Dublin 2, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jayson M. Semmens
5Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew Fox
6Fox Shark Research Foundation, Adelaide, South Australia 5070, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charlie Huveneers
7College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF
Loading

ABSTRACT

Some fishes and sea turtles are distinct from ectotherms by having elevated core body temperatures and metabolic rates. Quantifying the energetics and activity of the regionally endothermic species will help us understand how a fundamental biophysical process (i.e. temperature-dependent metabolism) shapes animal ecology; however, such information is limited owing to difficulties in studying these large, highly active animals. White sharks, Carcharodon carcharias, are the largest fish with regional endothermy, and potentially among the most energy-demanding fishes. Here, we deployed multi-sensor loggers on eight white sharks aggregating near colonies of long-nosed fur seals, Arctocephalus forsteri, off the Neptune Islands, Australia. Simultaneous measurements of depth, swim speed (a proxy for swimming metabolic rate) and body acceleration (indicating when sharks exhibited energy-efficient gliding behaviour) revealed their fine-scale swimming behaviour and allowed us to estimate their energy expenditure. Sharks repeatedly dived (mean swimming depth, 29 m) and swam at the surface between deep dives (maximum depth, 108 m). Modal swim speeds (0.80–1.35 m s−1) were slower than the estimated speeds that minimize cost of transport (1.3–1.9 m s−1), a pattern analogous to a ‘sit-and-wait’ strategy for a perpetually swimming species. All but one shark employed unpowered gliding during descents, rendering deep (>50 m) dives 29% less costly than surface swimming, which may incur additional wave drag. We suggest that these behavioural strategies may help sharks to maximize net energy gains by reducing swimming cost while increasing encounter rates with fast-swimming seals.

INTRODUCTION

The metabolic rate of organisms plays fundamental roles in physiological ecology by setting the ‘pace of life’ (Brown et al., 2004). Ectotherms (invertebrates, fishes, amphibians and reptiles) generally have lower body temperatures and, hence, lower metabolic rates than similar-sized endotherms (birds and mammals). Consequently, ectotherms are considered to ‘live life in the slow lane’ (e.g. move slower, eat less and grow slower), whereas endotherms have more active lifestyles, eat more food and grow more rapidly. The dichotomy of ectotherms and endotherms has long been a basis for understanding the lifestyles of diverse animals and their broad-scale ecological implications (Buckley et al., 2012); however, remarkable intermediate forms exit. Some fishes (tunas, opah and some sharks) and leatherback sea turtles have elevated core body temperatures and metabolic rates (Dickson and Graham, 2004; Paladino et al., 1990; Wegner et al., 2015), and exhibit highly active lifestyles (e.g. swim faster and migrate longer distances) (Watanabe et al., 2015) with elevated growth rates (Grady et al., 2014) compared with their ectothermic counterparts. The thermal physiology of these animals, referred to as regional endothermy (Dickson and Graham, 2004), is distinct from the true endothermy of birds and mammals owing to their confined warmed organs and incomplete abilities of regulating body temperature (Clarke and Portner, 2010). To stress their intermediate thermal physiology between true ectotherms and endotherms, some authors proposed the term ‘mesothermy’ (Grady et al., 2014). Quantifying the energetics and activity of regionally endothermic species in the wild will lead to a better understanding of how a fundamental biophysical process (i.e. temperature-dependent metabolism) shapes the ecology of diverse animals. However, such information is still limited, primarily because of difficulties in studying these large, highly active animals.

White sharks, Carcharodon carcharias (Linnaeus 1758), the largest fish with regional endothermy (typical adult body mass, 300–800 kg), are likely to have unusually high energy expenditure for a fish. Although they eat a variety of foods, including teleosts, other sharks and cephalopods (Estrada et al., 2006; Hussey et al., 2012), they seasonally aggregate near pinniped colonies in temperate waters to hunt weaned pups or adult seals. Once caught, a seal will become a disproportionally energy-rich food, equivalent to hundreds of teleosts or cephalopods, owing to its large body size and high fat content. However, seals, especially otariids (fur seals and sea lions), are fast swimmers with remarkable manoeuvrability (Fish et al., 2003; Watanabe et al., 2011). To maximize net energy gains, white sharks are expected to employ behavioural strategies that increase prey encounter rates while reducing the energetic cost of swimming. Despite previous studies on the movement patterns of white sharks near seal colonies (recorded by acoustic telemetry) (Goldman and Anderson, 1999; Huveneers et al., 2013; Jewell et al., 2014; Klimley et al., 2001; Towner et al., 2016), spatiotemporal distributions of seal-predation attempts (directly observed from a boat) (Martin et al., 2005, 2009) and the estimates of daily energy expenditure (Carey et al., 1982; Semmens et al., 2013), the potential behavioural strategies and their consequence on energetics in white sharks have not been sufficiently addressed.

In this study, we attached a package of recording devices, consisting of an accelerometer (with a speed, depth and temperature sensor) and video camera, to white sharks aggregating near the colonies of long-nosed fur seals, Arctocephalus forsteri (formally New Zealand fur seals), off the Neptune Islands, Australia. The direct measurements of swim speed (a proxy for swimming metabolic rate) and body acceleration (indicating when sharks exhibited energy-efficient gliding behaviour) not only revealed their fine-scale swimming behaviour, but also allowed us to estimate their instantaneous field metabolic rates (FMR). Based on this information, we tested two hypotheses regarding shark swimming strategies. First, we hypothesized that white sharks swim slower than the speed that minimizes the cost of transport (hereafter, UCOT-min, where COT is the energy needed to move a unit body mass over a unit distance). According to a theoretical model (Papastamatiou et al., 2018), sharks should do so to maximize net energy gain when the average speed of prey is comparable to that of the sharks (such as our white shark and seal system). This is because, in such systems, the probability of prey arriving at the predator’s location without the predator moving is relatively high, and predators do not need to find prey through active searching at the cost of increased metabolic rates. In other words, UCOT-min, which minimizes energy expenditure per unit distance rather than per unit time, is not optimal when predators can ‘sit and wait’. Second, we hypothesized that cost-efficient gliding behaviour with negative buoyancy, exhibited by white sharks during descending phases of dives (Gleiss et al., 2011a), has substantial effects on their overall swimming costs. More specifically, we would expect that a series of deep dives (passive descents followed by active ascents) shown by white sharks is associated with decreased FMR compared with surface swimming shown by sharks between deep dives. By testing these two hypotheses, we aim to better understand the energy management strategies of this evolutionarily interesting, regionally endothermic species.

MATERIALS AND METHODS

Fieldwork and instrumentation

The fieldwork was conducted at the Neptune Islands Group (Ron and Valerie Taylor) Marine Park in Australia (35°14′S, 136°04′E) during August–September 2014, October–November 2015 and January 2016. The island system is composed of two groups of small, rocky islands (the North and South Neptune Islands), which are approximately 10 km apart. In this area, commercial cage-diving tours are operated, in which customers can watch white sharks underwater from cages (Huveneers et al., 2017). Off the North Neptune Islands, sharks were attracted to a boat using bait and chum. When sharks swam past the boat, a metal clamp (to which an electronic biologging package was attached) was placed on the first dorsal fin of the sharks using a deployment pole (Customized Animal Tracking Solutions) (Chapple et al., 2015) (Fig. 1A). This remote attachment method has a great advantage over the conventional method of hooking and catching sharks, where, owing to stress, animals can exhibit unusual behaviour after being released (Sundström and Gruber, 2002; Whitney et al., 2016b). The package was programmed to detach from the clamp 1–2 days later by a time-scheduled release mechanism (Little Leonardo), float to the surface, and be located and recovered using signals from a satellite transmitter (Wildlife Computers) and VHF transmitter (Advanced Telemetry Systems) (Watanabe et al., 2004, 2008). The clamp had a corrodible section, and was designed to come off the dorsal fin after approximately 1 week (that is, nothing would remain attached to the sharks after the research was finished). For each shark tagged, sex was determined by underwater observation, and total length (TL, in m) was visually estimated in relation to the length of several parts of the boat (Table 1). The estimated TL was converted to precaudal length (PCL, in m; PCL=−0.09+0.85×TL) and then body mass [Mb, in kg; ln(Mb)=2.83+2.95×ln(PCL)] using published relationships for this species (Mollet and Cailliet, 1996). However, our estimates of body size may be inaccurate, and sensitivities were tested in the energetic modelling (see below).

Fig. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 1.

White shark swimming behaviour. (A) A shark with a biologging package attached. Photo credit: A. Fox. (B) The entire 24 h record of swimming depth for shark 5. This shark interacted with the boat during the initial 48 min and the last 30 min of the data. The red horizontal bar represents the period of simultaneous video recording, and red arrows represent the times when a seal was seen. The grey horizontal bar represents the period shown in detail in C. (C) An enlarged view of the swimming pattern, composed of shallow dives, deep dives and surface swimming (top horizontal bars), showing depth, swim speed, estimated field metabolic rate (FMR) and high-pass filtered lateral acceleration. Red vertical dashed lines denote the period of surface swimming with an elevated speed (2 m s−1), which may represent travel from the North to the South Neptune Islands (see Results). Grey vertical bars represent gliding periods.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 1.

Descriptive information, swimming behaviour and energetics of white sharks

The package included a PD3GT accelerometer (21 mm diameter, 115 mm length, 60 g; Little Leonardo), which recorded depth, swim speed (measured by a propeller sensor) and temperature at 1-s intervals, and triaxial acceleration (along longitudinal, lateral and dorso-ventral axes) at 1/16- or 1/32-s intervals throughout the deployment periods (1–2 days). The package on three individuals also included a DVL400M camera (21 mm width, 22 mm height, 68 mm length, 47 g; Little Leonardo), which recorded video (1440×1080 pixels at 30 frames s−1) for approximately 6 h. The camera was programmed with a 3–12 h delay start to target daytime periods when cage-diving operators were not present.

All necessary permits were obtained from the Department of Environment, Water and Natural Resources (DEWNR) (M26292), Marine Parks (MR00047), PIRSA Exemption (9902693 and 9902777) and the Flinders University ethics committee (E398).

Swim speed measurement

Relative swim speed, measured by the number of rotations per second of the propeller sensor, was converted to actual swim speed (m s−1) using equations obtained from a flow tank calibration experiment. In the experiment, a PD3GT accelerometer was set in the tank and flow speed was increased from 0.3 to 1.1 m s−1 at intervals of 0.1 m s−1. The relationship obtained was linear (R2>0.99, N=9 data points). Although the upper speed range was limited to 1.1 m s−1 by the capacity of the tank, a linear relationship between propeller rotation and swim speed has been validated for up to approximately 3.8 m s−1 (Aoki et al., 2012). Inevitable differences between the pitch angles of the sharks and those of the accelerometers (calculated from low-pass filtered longitudinal accelerations) were estimated for each shark using the within-data calibration method (Kawatsu et al., 2010). This ‘attachment angle’ was accounted for in the conversion of swim speed by dividing the raw speed estimate by the cosine of the attachment angle. To validate this correction method, another set of flow tank experiments was conducted. A PD3GT accelerometer was set in the tank at angles of 15, 30 and 45 deg relative to flow, and the flow speed was increased from 0.4 to 1.0 m s−1 at intervals of 0.2 m s−1 for each angle. Using the correction method, errors in the speed estimates (i.e. difference between the true and estimated speeds, expressed as percentages of the true speeds) were reduced (average error across the four different speeds was 1%, 8% and 9% for angles of 15, 30 and 45 deg, respectively). Therefore, the correction method was considered valid, as long as the attachment angle was moderate (<45 deg). By contrast, the differences between the yaw angles of the sharks and those of the accelerometers were assumed to be zero, because the packages were firmly attached to the side of the dorsal fins (Fig. 1A). The package was accidentally set vertically on the dorsal fin for shark 8, and the propeller sensor did not rotate properly. Swim speed and field metabolic rate (FMR) were not estimated for this individual.

Depth and acceleration data analyses

Behavioural data were analysed using the software Igor Pro (WaveMetrics) with the Ethographer extension (Sakamoto et al., 2009). The periods during which sharks interacted with the boat, representing unnatural behaviour (Huveneers et al., 2018), were excluded from the analyses. Based on the depth profiles, shark behaviour was categorized into three groups: (i) shallow dives, when the sharks undertook repeated up-and-down movements at <50 m depth without extended surfacing periods; (ii) deep dives, when the sharks dived from the surface to >50 m depth and returned to the surface within 1 h; and (iii) surface swimming, when the shark kept swimming at the surface (0–2 m depth) for >5 min (Fig. 1C). Although some intermediate patterns (e.g. continuous deep dives without surfacing) were also observed, 80% of our 150-h records was covered by the three categories (Table 2).

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 2.

Proportion of time spent in each behavioural category

Gliding periods during descending phases of dives were determined by the lateral acceleration records as the periods showing no cyclic changes. This method was confirmed to be valid by the simultaneously recorded video footage (Movie 1). Overall dynamic body acceleration (ODBA) (Wilson et al., 2006), a proxy for energy expenditure of the animals, was calculated as the sum of the absolute values of high-pass filtered acceleration over three axes.

Field metabolic rate

Instantaneous FMR of individual sharks was estimated based on swim speed, water temperature and whether the shark was actively swimming versus passively gliding. A previous experiment with swim-tunnel respirometry for short-fin mako sharks, Isurus oxyrinchus (6.1 kg body mass; 18°C water temperature), a species with regional endothermy closely related to white sharks, showed that their FMR (in mg O2 kg−1 h−1) during active swimming is approximated by: Embedded Image (1)

where SMR is standard (or resting) metabolic rate in mg O2 kg−1 h−1 and U is swim speed in TL s−1 (Sepulveda et al., 2007). Although this equation was obtained from sharks smaller than the white sharks tagged in the present study, the effects of body size on swimming metabolic rates in fishes can be removed by using swim speed relative to body length (Beamish, 1978). More specifically, log swimming metabolic rates plotted against swim speed relative to body length produce similar straight lines independently of body size of the fish (Beamish, 1978). Owing to the lack of direct measurements of swimming metabolic rates for larger fishes with regional endothermy, Eqn 1 was regarded as the best available information.

The SMR of short-fin mako sharks, estimated by an extrapolation of the relationship between swim speed and metabolic rate to zero speed, is 124 mg O2 kg−1 h−1 (Sepulveda et al., 2007). The SMR of white sharks was estimated by scaling up the short-fin mako shark value to the body mass of white sharks using a scaling exponent of 0.79 (Payne et al., 2015), and adjusted for the water temperature experienced by the sharks using a Q10 value of 2.42, a typical value reported for sharks (Whitney et al., 2016a) (see below for sensitivity analyses). Instantaneous FMR during active swimming periods was estimated based on swim speed and total length of the sharks using Eqn 1. All but one shark exhibited gliding behaviour during descending phases of dives, and FMR during gliding periods was set at SMR. FMR was smoothed using a 1-min running average to obtain a physiologically appropriate time scale for changes in metabolic rate (Williams et al., 2014). The units of FMR were converted from mg O2 kg−1 h−1 to W by assuming that 1 mol O2 equates to the utilization of 434 kJ.

We are aware of the limitations of scaling up a 6 kg short-fin mako shark to model 200–700 kg white sharks (see Payne et al., 2015); therefore, our focus in this study was to compare FMR among different behavioural categories and to estimate UCOT-min for individual sharks, rather than compare FMR of white sharks with that of other species.

Hypothesis testing

To test the hypothesis that white sharks swim slower than UCOT-min, the relationship between swim speed and COT was constructed for individual sharks based on Eqn 1 and the estimates of SMR as explained above (Fig. 2). COT (J m−1 kg−1) was calculated by dividing FMR (W) by swim speed (m s−1) and body mass (kg). The mean water temperature experienced by individual sharks was used in the calculation of FMR (Table 1). However, FMR and COT are sensitive to several parameters, especially body mass (estimated from visually determined body length), the scaling exponent of metabolic rates (set at 0.79) and Q10 values. To address these uncertainties, four additional scenarios were considered. In the first and second scenarios, the TL of each shark was assumed to be 0.3 m shorter and longer, respectively, than our estimate. A recent study conducted at the same site (C. May, unpublished data) showed that the mean difference between white shark TL visually estimated by scientists and that measured by stereo-video cameras is approximately 0.2 m. Our choice of 0.3 m, therefore, represents a conservative case, encompassing likely biases in size estimates. In the third scenario, the scaling exponent of metabolic rates was set at 0.84 (Sims, 2000). In the fourth scenario, the Q10 value was set at 1.67, which was reported for endothermic tunas (Dewar and Graham, 1994).

Fig. 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 2.

Sustained swim speed of white sharks (A–G) Frequency distributions of sustained (i.e. 5-min average) swim speed (bars) and the estimated cost of transport (curves) with its minimum value (circles) for individual sharks. As in Figs 1 and 3, different colours of the bars represent different behavioural categories (shallow dives, deep dives, surface swim and others). At each speed, different behavioural categories are accumulated (i.e. not superimposed), so that all data can be seen. Dotted and dashed curves represent the cost of transport under different scenarios [black dotted curve, total length (TL) of the shark is 0.3 m shorter than our estimate; black dashed curve, TL of the shark is 0.3 m longer than our estimate; red dotted curve, the scaling exponent of metabolic rates is 0.84; red dashed curve, Q10 value is 1.67). Shark 5 showed a high sub-peak (denoted by red arrow), which may represent the period when this shark travelled from the North to the South Neptune Islands. (H) Modal swim speeds for individual sharks (filled circles, with shark ID numbers) and swim speed during the putative travel between the islands recorded for shark 5 (open circle), plotted against body mass in log scales. For comparison, the allometric relationships of sustained swim speed for regionally endothermic fishes (pink line) and ectothermic fishes (light blue line) (Watanabe et al., 2015) are also shown.

Fig. 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 3.

White shark energetics. (A) Field metabolic rates (FMR) as multiples of standard metabolic rates (SMR), and (B) overall dynamic body acceleration (ODBA) for different behavioural categories, based on linear mixed-effects model analyses of data for all seven (FMR) or eight (ODBA) sharks. Numbers in parentheses are the number of behavioural events used in the analyses.

To test the hypothesis that deep diving behaviour (passive descents followed by active ascent) is cost-efficient, mean FMR and ODBA was calculated for each behavioural event, including shallow dives, deep dives and surface swimming. Because shallow dive events continued for hours without clear breaks, these events were split into 15-min segments to calculate mean FMR and ODBA. Then, the effects of behavioural categories on FMR and ODBA were examined with linear mixed-effect models with shark ID as a random factor, using the software R with the lme4 extension (Bates et al., 2014). Statistical significance was tested by comparing the full models and the models without behavioural categories using the likelihood ratio test.

High ODBA values for surface swimming events (0–2 m depth; Fig. 3B) may overestimate the swimming costs, because dorsal fins of the sharks (and the accelerometers attached) may oscillate while breaking the surface. To test this possibility, deeper portions of surface swimming events (1–2 m depth for >10 s) were subsampled, in which dorsal fins (approximately 0.5 m length) are unlikely to break the surface. The depth sensors had a sufficient resolution (0.097 m) and accuracy (calibrated to zero when they were floating at the surface) for this subsampling. Statistical analysis was repeated with the subsamples.

RESULTS

We attached the biologging packages to 10 sharks over three research cruises; however, in two individuals, the clamp came off prematurely and the recording durations were <2.5 h. Excluding these individuals and all periods during which sharks interacted with the boat (0–13 h), the effective sample size was eight, with recording durations of 9–37 h (total duration, 150 h) (Table 1). Despite considerable variation among individuals, the behaviour of all eight sharks was composed of shallow dives (60%), deep dives (11%), surface swimming (9%) and other behaviours (20%) (Table 2). Surface swimming mostly occurred between deep dives (Fig. 1C), but some surface swimming was observed between shallow dives. Based on the acceleration data, all but one (shark 3) shark exhibited gliding behaviour during descending phases of dives (Fig. 1C, Movie 1). Deep dives had more consistent dive profiles and proportionally longer gliding periods (20% of total durations) than shallow dives (8% of total durations). Video footage was obtained for three of the eight sharks, but one shark interacted with the boat throughout the footage. In the video footage obtained from shark 5, a seal was seen three times, once on the sea floor during shallow dives, and twice during surface swimming (Fig. 1B).

The modal, sustained swim speed (calculated as the 5-min average of swim speed) for individual sharks ranged from 0.80 to 1.35 m s−1 (overall average, 0.94 m s−1), which was slower than the estimated UCOT-min (range 1.3–1.9 m s−1; Fig. 2A–G). Under the scenarios that the TL of each shark is 0.3 m shorter and longer than our estimates, respectively, UCOT-min shifted to a lower range (1.1–1.8 m s−1) and a higher range (1.4–2.1 m s−1), respectively (black dotted and dashed curves in Fig. 2A–G). Nevertheless, the recorded modal swim speeds were still slower than the UCOT-min values. Under the additional two scenarios that (i) the scaling exponent is 0.84 rather than 0.79, and (ii) Q10 is 1.67 rather than 2.42, the COT curves shifted upward without affecting UCOT-min (red dotted and dashed curves in Fig. 2A–G). In addition, the recorded speeds were slower than the predicted speeds for the body mass and regionally endothermic physiology of white sharks, based on a published allometric relationship (Watanabe et al., 2015) (Fig. 2H). However, shark 5 had a higher subpeak at 2.05 m s−1, which was close to its UCOT-min (Fig. 2E) and the predicted speed from allometry (Fig. 2H). This subpeak corresponded to the period when the shark exhibited surface swimming with elevated speeds for 1 h (Fig. 1C). We know that this shark moved from the North Neptune Islands (where it was tagged) to the South Neptune Islands (where it was re-observed the next day and the tag was manually recovered, approximately 10 km away from the North Neptune Islands) during the deployment period. As such, the fast surface swimming period might represent travel between the islands.

Linear mixed-effects models based on the data for seven (for FMR, expressed as multiples of SMR) and eight sharks (for ODBA) showed that behavioural categories (shallow dives, deep dives and surface swim) affected both FMR (χ22=157.1, P<0.0001) and ODBA (χ22=564.4, P<0.0001), with deep dives being the least energetically expensive (Fig. 3). Based on FMR and ODBA, shallow dives were 13% and 11% more costly, respectively, whereas surface swimming was 29% and 155% more costly, respectively, than deep dives. Interestingly, surface swimming was 19% and 146% more costly (based on FMR and ODBA, respectively) than the non-gliding, ascending phase of deep dives (FMR, χ21=54.0, P<0.0001; ODBA, χ21=153.0, P<0.0001). When surface swimming events were replaced by deeper subsamples of the events (1–2 m depth), the estimate of ODBA for surface swimming decreased by 28% (in the model including shallow dives, deep dives and surface swimming) and 37% (in the model including surface swimming and the ascending phase of deep dives), but remained significantly higher than that of deep and shallow dives (χ22=84.7, P<0.0001) and the ascending phase of deep dives (χ21=19.4, P<0.0001). The results for FMR changed little.

DISCUSSION

Slow swim speed

Using propeller speed sensors, we showed that white sharks sustain swim speeds of 0.80–1.35 m s−1, which are slower than the estimated UCOT-min values. Our results were robust to some uncertainties in shark body size, the scaling exponent of metabolic rates and Q10 values, as shown by the sensitivity analyses (Fig. 2A–G). In addition, the recorded swim speeds were slower than the predicted speeds for the body mass and regionally endothermic physiology of white sharks (Fig. 2H). Our swim speed records are lower than the previous estimates based on acoustic telemetry [median 1.34 m s−1 (Klimley et al., 2001); median 2.25 m s−1, mean 2.91 m s−1 (Semmens et al., 2013)]; however, swim speed may have been overestimated in those studies, which relied on a positioning system with significant error. Our findings agree with a theoretical model (Papastamatiou et al., 2018) that states that sharks should swim slower than their UCOT-min to maximize net energy gain when the average prey speed is comparable to the average predator speed (such as our white shark and seal system). Largemouth bass in the wild also swim slower than its UCOT-min, presumably to increase foraging efficiency rather than maximize travel efficiency (Han et al., 2017). Another, but not mutually exclusive, interpretation is that white sharks might reduce energy expenditure by swimming at the minimum speed at which the forces acting on them, including hydrodynamic lift and negative buoyancy, are balanced (Gleiss et al., 2015; Iosilevskii and Papastamatiou, 2016). This interpretation is supported by our observation that shark 3, which swam the slowest compared with its UCOT-min (Fig. 2C), is the only individual that did not exhibit gliding behaviour during descents. That is, shark 3, which is a female, might have a buoyancy close to neutral owing to its high fat content, and could balance forces at slower swim speeds compared with other individuals. Overall, our results support our hypothesis that white sharks aggregating near seal colonies adopt slow speeds that may be optimized to increase encounter rates with fast-swimming seals while reducing swimming costs. This strategy is as close to a ‘sit-and-wait’ strategy as is possible for perpetual swimmers such as white sharks.

Interestingly, however, we also showed that a shark (shark 5) swam at a high speed (2 m s−1) at the surface for 1 h, presumably when it travelled from the North Neptune Islands to the South Neptune Islands. This sustained speed is among the highest values recorded for fishes (Watanabe et al., 2015), and close to the predicted speed for their body mass and regionally endothermic physiology. Moreover, the speed is close to UCOT-min of the shark, indicating that this shark adopted a different, faster optimal speed when travelling rather than foraging. Although we need more data to confirm our observations, this finding suggests that white sharks may use different swim speeds depending on the context to optimize their energy use, as previously reported for flight speeds of a bat (Grodzinski et al., 2009).

Cost-efficient gliding behaviour

Gliding behaviour during descending phases of dives was previously reported for white sharks (Gleiss et al., 2011a), but quantitative assessments of the energetic benefit based on field data have never been made. In theory, passive gliding descents followed by active ascents with negative buoyancy could lead to substantial energy savings compared with continuous horizontal swimming, because animals incur decreased drag during passive gliding for a given swim speed (Weihs, 1973). Moreover, cost-efficient intermittent swimming was experimentally validated using a pitching foil operated in a water tunnel at variable duty cycles (Floryan et al., 2017). In accordance with the previous studies, we showed that deep dives (which had proportionally longer gliding periods than shallow dives) were the least expensive, followed by shallow dives, with surface swimming the most expensive, based on our FMR estimates (Fig. 3A). One may argue that sharks are expected to work harder for a given swim speed during ascending phases of deep dives compared with horizontal swimming, and that the costs of deep dives are underestimated. Although this possibility cannot be fully assessed by our FMR estimates, ODBA, a proxy for energy expenditure that quantifies the relative body movements of the animals, showed a trend similar to that of FMR (Fig. 3B), supporting our argument that deep dives are the least expensive. Unexpectedly, even ascending phases of deep dives had lower FMR and ODBA than surface swimming. Therefore, the absence of gliding behaviour is not the only factor that explains the higher costs of surface swimming. Another factor is the relatively high speed during surface swimming, especially in shark 5 (Fig. 2). Additionally, when moving at the surface, animals inevitably create waves and incur increased drag (called wave drag, which may increase body movements and ODBA), even when they are fully submerged (Alexander, 2003). To avoid wave drag, animals may need to swim deeper than approximately 2.5 body diameters (Alexander, 2003), which is approximately 2 m for white sharks. Particularly high ODBA during surface swimming (Fig. 3B) could be due to the dorsal fins breaking the surface rather than high activities of the whole bodies. In fact, ODBA decreased by 28–37% when surface swimming events were replaced by deeper subsamples, in which dorsal fins are unlikely to break the surface. However, the subsamples still had higher ODBA than deep dives, shallow dives and ascending phases of deep dives, indicating that high energetic cost of surface swimming is a robust result.

The main function of deep-diving behaviour might be foraging rather than energy saving, as suggested by some burst swimming events observed during deep dives (Y. Y. Watanabe, unpublished data). In addition, five of the eight sharks did not exhibit deep diving behaviour during our limited recording periods (Table 2). Nevertheless, a large difference in FMR between deep dives and surface swimming, as well as the commonness of deep diving behaviour in both coastal and offshore habitats reported for this species from longer-term satellite telemetry data (Domeier and Nasby-Lucas, 2008; Sims et al., 2012; Weng et al., 2007), suggests that gliding behaviour has substantial effects on the overall swimming costs of white sharks. Among large-bodied sharks, prolonged gliding during descents has also been reported for whale sharks (Gleiss et al., 2011b), but not for tiger or Greenland sharks (Nakamura et al., 2011; Watanabe et al., 2012), despite their negative buoyancy. As apparently rare cases, prolonged gliding during ascents with positive buoyancy was reported for bluntnose sixgill and prickly sharks (Nakamura et al., 2015). How the interspecific variation in gliding behaviour is linked to species-specific foraging strategies would be an interesting question for future research. In addition, it is intriguing that surface swimming is costly for white sharks, given that they have a strong preference for surface swimming during oceanic migrations (Bonfil et al., 2005; Domeier and Nasby-Lucas, 2008; Sims et al., 2012). If surface swimming during long travels is for navigation purposes (e.g. using celestial cues) (Bonfil et al., 2005), it would mean a trade-off between navigation and energy saving, a topic that would merit further investigations.

In conclusion, by using modern biologging technologies, we provided support for the two hypotheses regarding behavioural strategies of white sharks aggregating near seal colonies. First, they swim slower than UCOT-min, presumably to increase encounter rates with fast-swimming seals while reducing swimming costs, as predicted by theoretical models. White sharks can be considered ‘sit-and-wait’ predators in this sense, although they are continuous swimmers. Second, sharks exhibit gliding behaviour during descending phases of dives, rendering diving behaviour less costly than horizontal surface swimming, which presumably incurs additional wave drag. This study highlights some new aspects of energy management strategies for white sharks, a species with unique eco-physiology among vertebrates.

Acknowledgements

We thank R. Hall, L. Meyer, R. Mulloy, L. Nazimi, S. Payne, W. Robbins, A. Schilds, M. Ward and S. Whitmarsh for their support during fieldwork, N. Miyata and T. Mori for their help with the flow tank experiment, and two anonymous reviewers for thoughtful comments.

FOOTNOTES

  • Competing interests

    The authors declare no competing or financial interests.

  • Author contributions

    Conceptualization: Y.Y.W., N.P., J.S., A.F., C.H.; Methodology: Y.Y.W., N.L.P., J.M.S., A.F., C.H.; Formal analysis: Y.Y.W.; Investigation: Y.Y.W., N.L.P., J.M.S., A.F., C.H.; Writing - original draft: Y.Y.W.; Writing - review & editing: N.L.P., J.M.S., C.H.

  • Funding

    This work was funded by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (25850138 and 16H04973), the Winifred Violet Scott Foundation, the Neiser Foundation, Nature Films Production, and supporters of the study through the crowdfunding campaign on Pozible. J.M.S. held a JSPS Invitation Fellowship for Research in Japan (L15560) during part of this work.

  • Data availability

    Data used in the linear mixed-effect model analyses are available from the figshare repository: 10.6084/m9.figshare.7671836

  • Supplementary information

    Supplementary information available online at http://jeb.biologists.org/lookup/doi/10.1242/jeb.185603.supplemental

  • Received May 28, 2018.
  • Accepted January 4, 2019.
  • © 2019. Published by The Company of Biologists Ltd
http://www.biologists.com/user-licence-1-1/

References

  1. ↵
    1. Alexander, R. M.
    (2003). Principles of Animal Locomotion. Princeton University Press.
  2. ↵
    1. Aoki, K.,
    2. Amano, M.,
    3. Mori, K.,
    4. Kourogi, A.,
    5. Kubodera, T. and
    6. Miyazaki, N.
    (2012). Active hunting by deep-diving sperm whales: 3D dive profiles and maneuvers during bursts of speed. Mar. Ecol. Prog. Ser. 444, 289-301. doi:10.3354/meps09371
    OpenUrlCrossRef
  3. ↵
    1. Bates, D.,
    2. Mächler, M.,
    3. Bolker, B. and
    4. Walker, S.
    (2014). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1-48. doi:10.1017/cbo9780511790942.022
    OpenUrlCrossRef
  4. ↵
    1. Beamish, F.
    (1978). Swimming capacity. In Fish Physiology Vol. 7. Locomotion (ed. D. J. R. William and S. Hoar), pp. 101-187. London: Academic Press.
  5. ↵
    1. Bonfil, R.,
    2. Meÿer, M.,
    3. Scholl, M. C.,
    4. Johnson, R.,
    5. O'brien, S.,
    6. Oosthuizen, H.,
    7. Swanson, S.,
    8. Kotze, D. and
    9. Paterson, M.
    (2005). Transoceanic migration, spatial dynamics, and population linkages of white sharks. Science 310, 100-103. doi:10.1126/science.1114898
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Brown, J. H.,
    2. Gillooly, J. F.,
    3. Allen, A. P.,
    4. Savage, V. M. and
    5. West, G. B.
    (2004). Toward a metabolic theory of ecology. Ecology 85, 1771-1789. doi:10.1890/03-9000
    OpenUrlCrossRefWeb of Science
  7. ↵
    1. Buckley, L. B.,
    2. Hurlbert, A. H. and
    3. Jetz, W.
    (2012). Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873-885. doi:10.1111/j.1466-8238.2011.00737.x
    OpenUrlCrossRef
  8. ↵
    1. Carey, F. G.,
    2. Kanwisher, J. W.,
    3. Brazier, O.,
    4. Gabrielson, G.,
    5. Casey, J. G. and
    6. Pratt, H. L. Jr.
    (1982). Temperature and activities of a white shark, Carcharodon carcharias. Copeia 1982, 254-260. doi:10.2307/1444603
    OpenUrlCrossRef
  9. ↵
    1. Chapple, T. K.,
    2. Gleiss, A. C.,
    3. Jewell, O. J. D.,
    4. Wikelski, M. and
    5. Block, B. A.
    (2015). Tracking sharks without teeth: a non-invasive rigid tag attachment for large predatory sharks. Anim. Biotelem. 3, 14. doi:10.1186/s40317-015-0044-9
    OpenUrlCrossRef
  10. ↵
    1. Clarke, A. and
    2. Portner, H.-O.
    (2010). Temperature, metabolic power and the evolution of endothermy. Biol. Rev. 85, 703-727. doi:10.1111/j.1469-185X.2010.00122.x
    OpenUrlCrossRefPubMed
  11. ↵
    1. Dewar, H. and
    2. Graham, J.
    (1994). Studies of tropical tuna swimming performance in a large water tunnel – I. Energetics. J. Exp. Biol. 192, 13-31.
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Dickson, K. A. and
    2. Graham, J. B.
    (2004). Evolution and consequences of endothermy in fishes. Physiol. Biochem. Zool. 77, 998-1018. doi:10.1086/423743
    OpenUrlCrossRefPubMedWeb of Science
  13. ↵
    1. Domeier, M. L. and
    2. Nasby-Lucas, N.
    (2008). Migration patterns of white sharks Carcharodon carcharias tagged at Guadalupe Island, Mexico, and identification of an eastern Pacific shared offshore foraging area. Mar. Ecol. Prog. Ser. 370, 221-237. doi:10.3354/meps07628
    OpenUrlCrossRefWeb of Science
  14. ↵
    1. Estrada, J. A.,
    2. Rice, A. N.,
    3. Natanson, L. J. and
    4. Skomal, G. B.
    (2006). Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks. Ecology 87, 829-834. doi:10.1890/0012-9658(2006)87[829:UOIAOV]2.0.CO;2
    OpenUrlCrossRefPubMedWeb of Science
  15. ↵
    1. Fish, F. E.,
    2. Hurley, J. and
    3. Costa, D. P.
    (2003). Maneuverability by the sea lion Zalophus californianus: turning performance of an unstable body design. J. Exp. Biol. 206, 667-674. doi:10.1242/jeb.00144
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Floryan, D.,
    2. Van Buren, T. and
    3. Smits, A. J.
    (2017). Forces and energetics of intermittent swimming. Acta Mech. Sin. 33, 725-732. doi:10.1007/s10409-017-0694-3
    OpenUrlCrossRef
  17. ↵
    1. Gleiss, A. C.,
    2. Jorgensen, S. J.,
    3. Liebsch, N.,
    4. Sala, J. E.,
    5. Norman, B.,
    6. Hays, G. C.,
    7. Quintana, F.,
    8. Grundy, E.,
    9. Campagna, C. and
    10. Trites, A. W.
    (2011a). Convergent evolution in locomotory patterns of flying and swimming animals. Nat. Commun. 2, 352. doi:10.1038/ncomms1350
    OpenUrlCrossRefPubMed
  18. ↵
    1. Gleiss, A. C.,
    2. Norman, B. and
    3. Wilson, R. P.
    (2011b). Moved by that sinking feeling: variable diving geometry underlies movement strategies in whale sharks. Funct. Ecol. 25, 595-607. doi:10.1111/j.1365-2435.2010.01801.x
    OpenUrlCrossRef
  19. ↵
    1. Gleiss, A. C.,
    2. Potvin, J.,
    3. Keleher, J. J.,
    4. Whitty, J. M.,
    5. Morgan, D. L. and
    6. Goldbogen, J. A.
    (2015). Mechanical challenges to freshwater residency in sharks and rays. J. Exp. Biol. 218, 1099-1110. doi:10.1242/jeb.114868
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Goldman, K. J. and
    2. Anderson, S. D.
    (1999). Space utilization and swimming depth of white sharks, Carcharodon carcharias, at the South Farallon Islands, central California. Environ. Biol. Fishes 56, 351-364. doi:10.1023/A:1007520931105
    OpenUrlCrossRef
  21. ↵
    1. Grady, J. M.,
    2. Enquist, B. J.,
    3. Dettweiler-Robinson, E.,
    4. Wright, N. A. and
    5. Smith, F. A.
    (2014). Evidence for mesothermy in dinosaurs. Science 344, 1268-1272. doi:10.1126/science.1253143
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Grodzinski, U.,
    2. Spiegel, O.,
    3. Korine, C. and
    4. Holderied, M. W.
    (2009). Context-dependent flight speed: evidence for energetically optimal flight speed in the bat Pipistrellus kuhlii? J. Anim. Ecol. 78, 540-548. doi:10.1111/j.1365-2656.2009.01526.x
    OpenUrlCrossRefPubMedWeb of Science
  23. ↵
    1. Han, A. X.,
    2. Berlin, C. and
    3. Ellerby, D. J.
    (2017). Field swimming behavior in largemouth bass deviates from predictions based on economy and propulsive efficiency. J. Exp. Biol. 220, 3204-3208. doi:10.1242/jeb.158345
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Hussey, N. E.,
    2. McCann, H. M.,
    3. Cliff, G.,
    4. Dudley, S. F.,
    5. Wintner, S. P. and
    6. Fisk, A. T.
    (2012). Size-based analysis of diet and trophic position of the white shark (Carcharodon carcharias) in South African waters. In Global Perspectives on the Biology and Life History of the White Shark (ed. M. L. Domeier), pp. 27-49. CRC Press.
  25. ↵
    1. Huveneers, C.,
    2. Rogers, P. J.,
    3. Beckmann, C.,
    4. Semmens, J. M.,
    5. Bruce, B. D. and
    6. Seuront, L.
    (2013). The effects of cage-diving activities on the fine-scale swimming behaviour and space use of white sharks. Mar. Biol. 160, 2863-2875. doi:10.1007/s00227-013-2277-6
    OpenUrlCrossRef
  26. ↵
    1. Huveneers, C.,
    2. Meekan, M. G.,
    3. Apps, K.,
    4. Ferreira, L. C.,
    5. Pannell, D. and
    6. Vianna, G. M. S.
    (2017). The economic value of shark-diving tourism in Australia. Rev. Fish Biol. Fish. 27, 1-16. doi:10.1007/s11160-017-9486-x
    OpenUrlCrossRef
  27. ↵
    1. Huveneers, C.,
    2. Watanabe, Y. Y.,
    3. Payne, N. L. and
    4. Semmens, J. M.
    (2018). Interacting with wildlife tourism increases activity of white sharks. Conserv Physiol. 6, coy019. doi:10.1093/conphys/coy019
    OpenUrlCrossRef
  28. ↵
    1. Iosilevskii, G. and
    2. Papastamatiou, Y. P.
    (2016). Relations between morphology, buoyancy and energetics of requiem sharks. R. Soc. Open Sci. 3, 160406. doi:10.1098/rsos.160406
    OpenUrlCrossRef
  29. ↵
    1. Jewell, O. J. D.,
    2. Wcisel, M. A.,
    3. Towner, A. V.,
    4. Chivell, W.,
    5. van der Merwe, L. and
    6. Bester, M. N.
    (2014). Core habitat use of an apex predator in a complex marine landscape. Mar. Ecol. Prog. Ser. 506, 231-242. doi:10.3354/meps10814
    OpenUrlCrossRef
  30. ↵
    1. Kawatsu, S.,
    2. Sato, K.,
    3. Watanabe, Y.,
    4. Hyodo, S.,
    5. Breves, J. P.,
    6. Fox, B. K.,
    7. Grau, E. G. and
    8. Miyazaki, N.
    (2010). A new method to calibrate attachment angles of data loggers in swimming sharks. Eurasip J. Adv. Signal Process. 2010, 732586. doi:10.1155/2010/732586
    OpenUrlCrossRef
  31. ↵
    1. Klimley, A. P.,
    2. Le Boeuf, B. J.,
    3. Cantara, K. M.,
    4. Richert, J. E.,
    5. Davis, S. F.,
    6. Van Sommeran, S. and
    7. Kelly, J. T.
    (2001). The hunting strategy of white sharks (Carcharodon carcharias) near a seal colony. Mar. Biol. 138, 617-636. doi:10.1007/s002270000489
    OpenUrlCrossRef
  32. ↵
    1. Martin, R. A.,
    2. Hammerschlag, N.,
    3. Collier, R. S. and
    4. Fallows, C.
    (2005). Predatory behaviour of white sharks (Carcharodon carcharias) at Seal Island, South Africa. J. Mar. Biol. Assoc. U. K. 85, 1121-1135. doi:10.1017/S002531540501218X
    OpenUrlCrossRefWeb of Science
  33. ↵
    1. Martin, R. A.,
    2. Rossmo, D. K. and
    3. Hammerschlag, N.
    (2009). Hunting patterns and geographic profiling of white shark predation. J. Zool. 279, 111-118. doi:10.1111/j.1469-7998.2009.00586.x
    OpenUrlCrossRefWeb of Science
  34. ↵
    1. Mollet, H. F. and
    2. Cailliet, G. M.
    (1996). Using allometry to predict body mass from linear measurements of the white shark. In Great White Sharks: The Biology of Carcharodon carcharias (ed. P. A. Klimley and D. G. Ainley), pp. 81-89. Academic Press.
  35. ↵
    1. Nakamura, I.,
    2. Watanabe, Y. Y.,
    3. Papastamatiou, Y. P.,
    4. Sato, K. and
    5. Meyer, C. G.
    (2011). Yo-yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo cuvier. Mar. Ecol. Prog. Ser. 424, 237-246. doi:10.3354/meps08980
    OpenUrlCrossRefWeb of Science
  36. ↵
    1. Nakamura, I.,
    2. Meyer, C. G. and
    3. Sato, K.
    (2015). Unexpected positive buoyancy in deep sea sharks, Hexanchus griseus, and a Echinorhinus cookei. PLoS ONE 10, e0127667. doi:10.1371/journal.pone.0127667
    OpenUrlCrossRef
  37. ↵
    1. Paladino, F. V.,
    2. O'Connor, M. P. and
    3. Spotila, J. R.
    (1990). Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs. Nature 344, 858. doi:10.1038/344858a0
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Papastamatiou, Y. P.,
    2. Iosilevskii, G.,
    3. Leos-Barajas, V.,
    4. Brooks, E. J.,
    5. Howey, L. A.,
    6. Chapman, D. D. and
    7. Watanabe, Y. Y.
    (2018). Optimal swimming strategies and behavioral plasticity of oceanic whitetip sharks. Sci. Rep. 8, 551. doi:10.1038/s41598-017-18608-z
    OpenUrlCrossRef
  39. ↵
    1. Payne, N. L.,
    2. Snelling, E. P.,
    3. Fitzpatrick, R.,
    4. Seymour, J.,
    5. Courtney, R.,
    6. Barnett, A.,
    7. Watanabe, Y. Y.,
    8. Sims, D. W.,
    9. Squire, L. and
    10. Semmens, J. M.
    (2015). A new method for resolving uncertainty of energy requirements in large water breathers: the ‘mega-flume’ seagoing swim-tunnel respirometer. Methods Ecol. Evol. 6, 668-677. doi:10.1111/2041-210X.12358
    OpenUrlCrossRef
  40. ↵
    1. Sakamoto, K. Q.,
    2. Sato, K.,
    3. Ishizuka, M.,
    4. Watanuki, Y.,
    5. Takahashi, A.,
    6. Daunt, F. and
    7. Wanless, S.
    (2009). Can ethograms be automatically generated using body acceleration data from free-ranging birds? PLoS ONE 4, e5379. doi:10.1371/journal.pone.0005379
    OpenUrlCrossRefPubMed
  41. ↵
    1. Semmens, J.,
    2. Payne, N.,
    3. Huveneers, C.,
    4. Sims, D. and
    5. Bruce, B.
    (2013). Feeding requirements of white sharks may be higher than originally thought. Sci. Rep. 3, 1471. doi:10.1038/srep01471
    OpenUrlCrossRefPubMed
  42. ↵
    1. Sepulveda, C. A.,
    2. Graham, J. B. and
    3. Bernal, D.
    (2007). Aerobic metabolic rates of swimming juvenile mako sharks, Isurus oxyrinchus. Mar. Biol. 152, 1087-1094. doi:10.1007/s00227-007-0757-2
    OpenUrlCrossRefWeb of Science
  43. ↵
    1. Sims, D. W.
    (2000). Can threshold foraging responses of basking sharks be used to estimate their metabolic rate? Mar. Ecol. Prog. Ser. 200, 289-296. doi:10.3354/meps200289
    OpenUrlCrossRef
  44. ↵
    1. Sims, D. W.,
    2. Humphries, N. E.,
    3. Bradford, R. W. and
    4. Bruce, B. D.
    (2012). Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. J. Anim. Ecol. 81, 432-442. doi:10.1111/j.1365-2656.2011.01914.x
    OpenUrlCrossRefPubMed
  45. ↵
    1. Sundström, L. F. and
    2. Gruber, S. H.
    (2002). Effects of capture and transmitter attachments on the swimming speed of large juvenile lemon sharks in the wild. J. Fish Biol. 61, 834-838. doi:10.1111/j.1095-8649.2002.tb00914.x
    OpenUrlCrossRef
  46. ↵
    1. Towner, A. V.,
    2. Leos-Barajas, V.,
    3. Langrock, R.,
    4. Schick, R. S.,
    5. Smale, M. J.,
    6. Kaschke, T.,
    7. Jewell, O. J. D. and
    8. Papastamatiou, Y. P.
    (2016). Sex-specific and individual preferences for hunting strategies in white sharks. Funct. Ecol. 30, 1397-1407. doi:10.1111/1365-2435.12613
    OpenUrlCrossRef
  47. ↵
    1. Watanabe, Y.,
    2. Baranov, E. A.,
    3. Sato, K.,
    4. Naito, Y. and
    5. Miyazaki, N.
    (2004). Foraging tactics of Baikal seals differ between day and night. Mar. Ecol. Prog. Ser. 279, 283-289. doi:10.3354/meps279283
    OpenUrlCrossRef
  48. ↵
    1. Watanabe, Y.,
    2. Wei, Q.,
    3. Yang, D.,
    4. Chen, X.,
    5. Du, H.,
    6. Yang, J.,
    7. Sato, K.,
    8. Naito, Y. and
    9. Miyazaki, N.
    (2008). Swimming behavior in relation to buoyancy in an open swimbladder fish, the Chinese sturgeon. J. Zool. 275, 381-390. doi:10.1111/j.1469-7998.2008.00451.x
    OpenUrlCrossRefWeb of Science
  49. ↵
    1. Watanabe, Y. Y.,
    2. Sato, K.,
    3. Watanuki, Y.,
    4. Takahashi, A.,
    5. Mitani, Y.,
    6. Amano, M.,
    7. Aoki, K.,
    8. Narazaki, T.,
    9. Iwata, T.,
    10. Minamikawa, S. et al.
    (2011). Scaling of swim speed in breath-hold divers. J. Anim. Ecol. 80, 57-68. doi:10.1111/j.1365-2656.2010.01760.x
    OpenUrlCrossRefPubMed
  50. ↵
    1. Watanabe, Y. Y.,
    2. Lydersen, C.,
    3. Fisk, A. T. and
    4. Kovacs, K. M.
    (2012). The slowest fish: Swim speed and tail-beat frequency of Greenland sharks. J. Exp. Mar. Biol. Ecol. 426, 5-11. doi:10.1016/j.jembe.2012.04.021
    OpenUrlCrossRef
  51. ↵
    1. Watanabe, Y. Y.,
    2. Goldman, K. J.,
    3. Caselle, J. E.,
    4. Chapman, D. D. and
    5. Papastamatiou, Y. P.
    (2015). Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes. Proc. Natl. Acad. Sci. USA 112, 6104-6109. doi:10.1073/pnas.1500316112
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Wegner, N. C.,
    2. Snodgrass, O. E.,
    3. Dewar, H. and
    4. Hyde, J. R.
    (2015). Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus. Science 348, 786-789. doi:10.1126/science.aaa8902
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. Weihs, D.
    (1973). Mechanically efficient swimming techniques for fish with negative buoyancy. J. Mar. Res. 31, 194-209.
    OpenUrlWeb of Science
  54. ↵
    1. Weng, K. C.,
    2. O'Sullivan, J. B.,
    3. Lowe, C. G.,
    4. Winkler, C. E.,
    5. Dewar, H. and
    6. Block, B. A.
    (2007). Movements, behavior and habitat preferences of juvenile white sharks Carcharodon carcharias in the eastern Pacific. Mar. Ecol. Prog. Ser. 338, 211-224. doi:10.3354/meps338211
    OpenUrlCrossRef
  55. ↵
    1. Whitney, N. M.,
    2. Lear, K. O.,
    3. Gaskins, L. C. and
    4. Gleiss, A. C.
    (2016a). The effects of temperature and swimming speed on the metabolic rate of the nurse shark (Ginglymostoma cirratum, Bonaterre). J. Exp. Mar. Biol. Ecol. 477, 40-46. doi:10.1016/j.jembe.2015.12.009
    OpenUrlCrossRef
  56. ↵
    1. Whitney, N. M.,
    2. White, C. F.,
    3. Gleiss, A. C.,
    4. Schwieterman, G. D.,
    5. Anderson, P.,
    6. Hueter, R. E. and
    7. Skomal, G. B.
    (2016b). A novel method for determining post-release mortality, behavior, and recovery period using acceleration data loggers. Fisheries Research 183, 210-221. doi:10.1016/j.fishres.2016.06.003
    OpenUrlCrossRef
  57. ↵
    1. Williams, T. M.,
    2. Wolfe, L.,
    3. Davis, T.,
    4. Kendall, T.,
    5. Richter, B.,
    6. Wang, Y.,
    7. Bryce, C.,
    8. Elkaim, G. H. and
    9. Wilmers, C. C.
    (2014). Instantaneous energetics of puma kills reveal advantage of felid sneak attacks. Science 346, 81-85. doi:10.1126/science.1254885
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Wilson, R. P.,
    2. White, C. R.,
    3. Quintana, F.,
    4. Halsey, L. G.,
    5. Liebsch, N.,
    6. Martin, G. R. and
    7. Butler, P. J.
    (2006). Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J. Anim. Ecol. 75, 1081-1090. doi:10.1111/j.1365-2656.2006.01127.x
    OpenUrlCrossRefPubMedWeb of Science
View Abstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

Keywords

  • Biologging
  • Swim speed
  • Cost of transport
  • Optimal behaviour

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Swimming strategies and energetics of endothermic white sharks during foraging
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Research Article
Swimming strategies and energetics of endothermic white sharks during foraging
Yuuki Y. Watanabe, Nicholas L. Payne, Jayson M. Semmens, Andrew Fox, Charlie Huveneers
Journal of Experimental Biology 2019 222: jeb185603 doi: 10.1242/jeb.185603 Published 18 February 2019
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Research Article
Swimming strategies and energetics of endothermic white sharks during foraging
Yuuki Y. Watanabe, Nicholas L. Payne, Jayson M. Semmens, Andrew Fox, Charlie Huveneers
Journal of Experimental Biology 2019 222: jeb185603 doi: 10.1242/jeb.185603 Published 18 February 2019

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Acknowledgements
    • FOOTNOTES
    • References
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF

Related articles

Cited by...

More in this TOC section

  • The visual ecology of Holocentridae, a nocturnal coral reef fish family with a deep-sea-like multibank retina
  • Tactile active sensing in an insect plant pollinator
  • Ocean Acidification Alters Properties of the Exoskeleton in Adult Tanner Crabs, Chionoecetes bairdi
Show more RESEARCH ARTICLE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Meet the Editors at SICB Virtual 2021

Reserve your place to join some of the journal editors, including Editor-in-Chief Craig Franklin, at our Meet the Editor session on 17 February at 2pm (EST). Don’t forget to view our SICB Subject Collection, featuring relevant JEB papers relating to some of the symposia sessions.


2020 at The Company of Biologists

Despite 2020's challenges, we were able to bring a number of long-term projects and new ventures to fruition. As we enter a new year, join us as we reflect on the triumphs of the last 12 months.


Critical temperature window sends migratory black-headed buntings on their travels

The spring rise in temperature at black-headed bunting overwintering sites is essential for triggering the physical changes that they undergo before embarking on their spring migration – read more.


Developmental and reproductive physiology of small mammals at high altitude

Cayleih Robertson and Kathryn Wilsterman focus on high-altitude populations of the North American deer mouse in their review of the challenges and evolutionary innovations of pregnant and nursing small mammals at high altitude.


Read & Publish participation extends worldwide

“Being able to publish Open Access articles free of charge means that my article gets maximum exposure and has maximum impact, and that all my peers can read it regardless of the agreements that their universities have with publishers.”

Professor Roi Holzman (Tel Aviv University) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992