Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
INSIDE JEB
Diving dolphins are master planners
Kathryn Knight
Journal of Experimental Biology 2018 221: jeb177121 doi: 10.1242/jeb.177121 Published 28 February 2018
Kathryn Knight
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: kathryn.knight@biologists.com
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading
Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Risso's dolphin equipped with a miniaturised suction-cup-attached tag. Photo credit: Ari Friedlaender.

Slipping beneath the surface of the water in pursuit of food sets the timer ticking for hungry dolphins; the pressure is on to locate food and make it back to the surface before they run out of oxygen. So what strategies might a peckish dolphin use to forage efficiently on a tight time budget? ‘Lab experiments that test the memory of animals for the location of food show that they have a similar ability to that of humans’, says Patricia Arranz from the University of St Andrews, UK: which suggests that some foraging animals may plan ahead. However, it was unclear whether animals that are actively foraging in their natural surroundings would adjust their hunting strategy in response to the conditions that they encountered before and during a dive. Knowing that Risso's dolphins dive down several hundred metres to dine on shoals of squid, Arranz, Peter Tyack, also from St Andrews, Brandon Southall from the University of California, Santa Cruz, USA, and Kelly Benoit-Bird from the Monterey Bay Aquarium Research Institute, USA, decided to find out whether these mammals plan their submarine sorties.

However, tracking the activities of wild animals is extremely challenging. ‘It is really difficult to approach them and attach something to their backs; you need to be very patient!’ says Arranz. She recalls how John Calambokidis from the Cascadia Research Collective, USA, and Ari Friedlaender from the Marine Mammal Institute, USA, cautiously observed the animals while carefully manoeuvring into place, before gently attaching the data loggers – which tracked the animals’ depths and movements, and the sounds they emitted – with a 5 m-long pole. Then, Benoit-Bird and Southall tracked the location of shoals of squid beneath the surface with echosounders mounted on remotely operated underwater robots while the dolphins searched for food. ‘In one of the experiments, we were extremely lucky as the group that the tagged animal was in stayed in the same area, allowing us to track the dolphin every time it was at the surface and observe the prey with the echosounder right where and when the dolphin was foraging’, says Arranz.

Back in the lab, Arranz and Benoit-Bird analysed the recordings from 37 dolphin dives while tracking the location of the squid prey and realised that the dolphins began echolocating soon after leaving the surface, ‘Probably to gain information on the depth distribution and availability of prey and to respond swiftly to rapid changes in habitat structure at different depths’, says Arranz. And the descending dolphins seemed to match their echolocation range to the depth at which they had encountered the most squid during their previous dive, ‘Which can be interpreted as dolphins recalling information to plan the next foraging dive’, says Arranz. The team also noticed that the dolphins continued echolocating as they returned to the surface, even though they were no longer hunting, as if they were planning ahead and scouting out the best location for their next dive. And the animals seemed to be able to tailor their diving strategy as the conditions changed, sometimes targeting a shallow layer of squid at the outset, but shifting their attention to deeper, more plentiful squid patches later in the dive.

The dolphins were definitely planning ahead, pulling together information that they had gleaned during previous encounters and combining it with their present experience to optimise their dives and ensure that they made the most of each precious lungful of air while submerged.

  • © 2018. Published by The Company of Biologists Ltd

References

    1. Arranz, P.,
    2. Benoit-Bird, K. J.,
    3. Southall, B. L.,
    4. Calambokidis, J.,
    5. Friedlaender, A. S. and
    6. Tyack, P. L.
    (2018). Risso's dolphins plan foraging dives. J. Exp. Biol. 221, doi:10.1242/jeb.165209. doi:10.1242/jeb.165209
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Diving dolphins are master planners
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
INSIDE JEB
Diving dolphins are master planners
Kathryn Knight
Journal of Experimental Biology 2018 221: jeb177121 doi: 10.1242/jeb.177121 Published 28 February 2018
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
INSIDE JEB
Diving dolphins are master planners
Kathryn Knight
Journal of Experimental Biology 2018 221: jeb177121 doi: 10.1242/jeb.177121 Published 28 February 2018

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Wing damage no obstacle for hummingbird hawkmoths
  • Making a difference: the role of comparative biology in tackling climate change
  • Lifestyle difference gives female yellow-billed hornbills the edge
Show more INSIDE JEB

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Welcome to JEB’s new Editor Monica Daley

We are pleased to welcome Monica Daley to JEB’s Editorial team. Monica has had a long association with JEB before taking up her new role, overseeing peer review of neuromuscular physiology, terrestrial biomechanics and integrative physiology of locomotion.


In the field with Robyn Hetem

Continuing our fieldwork series, Robyn Hetem reflects on working with species ranging from aardvark to zebra, and the impact COVID-19 has had on fieldwork.


Read & Publish participation continues to grow

“It is particularly encouraging for early career researchers, as it allows them to display their research globally without the need to find costs to cover the open access option.”

Professor Fernando Montealegre-Z (University of Lincoln) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Nocturnal reef residents have deep-sea-like eyes

Fanny de Busserolles and colleagues from The University of Queensland have discovered that the eyes of nocturnal reef fish have multibank retinas, layers of photoreceptors, similar to the eyes of deep-sea fish that live in dim light conditions.


Mechanisms underlying gut microbiota–host interactions in insects

In their Review, Konstantin Schmidt and Philipp Engel summarise recent findings about the mechanisms involved in gut colonisation and the provisioning of beneficial effects in gut microbiota–insect symbiosis.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992