Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
INSIDE JEB
Decisive sea otters distinguish differences by touch
Kathryn Knight
Journal of Experimental Biology 2018 221: jeb188862 doi: 10.1242/jeb.188862 Published 17 September 2018
Kathryn Knight
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: kathryn.knight@biologists.com
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading
Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Selka the sea otter eating a sea urchin. Photo credit: Ari Friedlander (permit no. USFWS MA186914-2).

When dinner is encased in a robust shell, brute force is often the only solution, but sea otters (Enhydra lutris) have been more ingenious. Some pound clams and snails on a rock balanced on their chests, while others skilfully crack open shells to satisfy their voracious appetites. Describing sea otters as eating machines, Sarah McKay Strobel from the University of California Santa Cruz (UCSC), USA, explains that they devour 25% of their own body weight each day just to remain warm. Yet little was known about their hunting tactics because the shy mammals stop seeking food when human divers are near. Suspecting that the enigmatic animals do not rely on smell or vision to locate dinner in the cloudy Monterey Bay waters, Strobel and PI Colleen Reichmuth wondered whether the dextrous creatures might depend instead on the sensitivity of their whiskers and paws to hunt by touch.

‘Sea otters can sometimes be viewed as the “problem child” when it comes to training’, says Strobel, recalling the months of effort that went into preparing a wild sea otter named Selka at the Long Marine Laboratory at UCSC for her starring role. Working with a large team of volunteer helpers, Strobel, Reichmuth and Jillian Sills trained Selka to approach a cabinet perched on the side of her pool, in which they concealed a pair of side-by-side vertically ridged boards: one with 2 mm wide grooves and another with 5 mm wide grooves. Inserting her paw through a narrow slot into the cabinet, Selka touched both and Strobel rewarded her whenever she pressed hard on the 2 mm board to produce a ‘click’, indicating that she had identified the correct one. Once Selka had mastered the first comparison, the team trained her to identify the 2 mm grooves when offered a choice between it and a 4 mm grid, before completing seven more comparisons. They also taught the sea otter to interrogate the grids with her whiskers, although Strobel admits that training her to wear a blindfold while nuzzling the boards was tricky. ‘I knew that if I tried to do anything Selka wasn't ready for, I would very likely get bit … I had to make wearing the blindfold fun’, Strobel smiles. Having completed the training process in the air, the team then raised the water level in Selka's pool to inundate the cabinet and trained her to differentiate between the submerged grids.

After months of dedicated patience, the team tested Selka's ability to distinguish the 2 mm grooved board from boards with grooves ranging from 2.1 to 3 mm wide. Tapping the pairs of boards with her paw, Selka seemed to recognise the 2 mm wide grooves almost instantly if she encountered them first, depressing it swiftly to make a click, but moved on quickly to the second board if the grooves were the wrong width. Strobel admits that she was amazed by Selka's decisiveness – taking less than 0.2 s when using her paw and 0.4 s when exploring with her whiskers – in contrast to the human volunteers, which explored the boards with their fingertips and were 30 times slower. And it made no difference to Selka whether the boards were submerged or in the air. Tim Tinker also used a novel method to compare the change in Selka's accuracy as the difference between the grooves became narrower, and found that she could distinguish grooves that were 0.28 mm wider than the 2 mm groove with her paw, although her accuracy declined slightly when using her whiskers (0.48 mm wider than the 2 mm grooves).

‘Selka used her memory to solve the trial as quickly as possible’, says Strobel, who suspects that sea otters’ ability to make rapid decisions based on touch is essential for their survival. ‘Their dives tend to be 1–2 minutes or shorter, which means they have to be very efficient’, she says, adding ‘our results … suggest that sea otters are capable of using touch in this short amount of time to detect prey’.

  • © 2018. Published by The Company of Biologists Ltd

References

    1. Strobel, S. M.,
    2. Sills, J. M.,
    3. Tinker, M. T. and
    4. Reichmuth, C. J.
    (2018). Active touch in sea otters: in-air and underwater texture discrimination thresholds and behavioral strategies for paws and vibrissae. J. Exp. Biol. 220, jeb181347. doi:10.1242/jeb.181347.
    OpenUrlCrossRef
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Decisive sea otters distinguish differences by touch
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
INSIDE JEB
Decisive sea otters distinguish differences by touch
Kathryn Knight
Journal of Experimental Biology 2018 221: jeb188862 doi: 10.1242/jeb.188862 Published 17 September 2018
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
INSIDE JEB
Decisive sea otters distinguish differences by touch
Kathryn Knight
Journal of Experimental Biology 2018 221: jeb188862 doi: 10.1242/jeb.188862 Published 17 September 2018

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Hiking trails ideal for sauntering grizzlies
  • Versatile gene expression helps trail-blazing house sparrows adapt
  • Dwarf sperm whales click like shallow dwellers despite open ocean lifestyle
Show more INSIDE JEB

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Predicting the Future: Species Survival in a Changing World

Read our new special issue exploring the significant role of experimental biology in assessing and predicting the susceptibility or resilience of species to future, human-induced environmental change.


Big Biology Podcast - Hollie Putnam and coral bleaching

Catch the next JEB-sponsored episode of the Big Biology Podcast where Art and Marty talk to Hollie Putnam about the causes of coral bleaching and the basic biology of corals in the hope of selectively breeding corals that can better tolerate future ocean conditions.

Read Hollie's Review on the subject, which is featured in our current special issue. 


Stark trade-offs and elegant solutions in arthropod visual systems

Many elegant eye specializations that evolved in response to visual challenges continue to be discovered. A new Review by Meece et al. summarises exciting solutions evolved by insects and other arthropods in response to specific visual challenges.


Head bobbing gives pigeons a sense of perspective

Pigeons might look goofy with their head-bobbing walk, but it turns out that the ungainly head manoeuvre allows the birds to judge distance.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992