Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
COMMENTARY
The evolution of foraging capacity and gigantism in cetaceans
J. A. Goldbogen, P. T. Madsen
Journal of Experimental Biology 2018 221: jeb166033 doi: 10.1242/jeb.166033 Published 12 June 2018
J. A. Goldbogen
1Department of Biology, Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. A. Goldbogen
  • For correspondence: jergold@stanford.edu
P. T. Madsen
2Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
3Aarhus Institute of Advanced Studies, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading

ABSTRACT

The extant diversity and rich fossil record of cetaceans provides an extraordinary evolutionary context for investigating the relationship between form, function and ecology. The transition from terrestrial to marine ecosystems is associated with a complex suite of morphological and physiological adaptations that were required for a fully aquatic mammalian life history. Two specific functional innovations that characterize the two great clades of cetaceans, echolocation in toothed whales (Odontoceti) and filter feeding in baleen whales (Mysticeti), provide a powerful comparative framework for integrative studies. Both clades exhibit gigantism in multiple species, but we posit that large body size may have evolved for different reasons and in response to different ecosystem conditions. Although these foraging adaptations have been studied using a combination of experimental and tagging studies, the precise functional drivers and consequences of morphological change within and among these lineages remain less understood. Future studies that focus at the interface of physiology, ecology and paleontology will help elucidate how cetaceans became the largest predators in aquatic ecosystems worldwide.

Introduction

Researchers have long recognized the importance of body size in biology. The influence of scale is omnipresent throughout an animal's life history and its impact determines a diverse range of processes, ranging from organismal performance to ecological niche (Peters, 1983; Schmidt-Nielsen, 1984; Vermeij, 2016). Most importantly, body size acts as a primary driver and allometric constraint of metabolism such that larger animals generally exhibit lower mass-specific metabolic rates (Weibel and Hoppeler, 2005; West et al., 2002; White et al., 2009). Nevertheless, extremely large body size (i.e. gigantism) comes at the cost of high absolute food requirements (Croll et al., 2006; Williams, 2006), but also confers a suite of advantages, including reduced cost of transport (Alexander, 2005; Williams, 1999) and the ability to fast for extended periods of time (Castellini and Rea, 1992; Lindstedt and Boyce, 1985; Millar and Hickling, 1990), which together enhance migratory capacity (Watanabe et al., 2015). An additional benefit of gigantism is improved anti-predator defense and, therefore, decreased predation risk (Ford and Reeves, 2008; Sinclair et al., 2003). However, with rising anthropogenic disturbance and pressures worldwide (McCauley et al., 2015), many large animals are now facing increased extinction risk despite having protected status (Payne et al., 2016; Ripple et al., 2017).

The largest animals of both the past and present tend to be vertebrate filter feeders in marine ecosystems (Alexander, 1998; Friedman et al., 2010; Vermeij, 2016). Filter feeding in vertebrates is characterized by the engulfment of prey-laden water into the oropharyngeal cavity followed by the filtration of large numbers of organisms suspended in the fluid (Goldbogen et al., 2017; Motta et al., 2010; Paig-Tran et al., 2013; Rubenstein and Koehl, 1977; Sanderson et al., 2016; Sanderson and Wassersug, 1990; Werth, 2000b; Werth and Potvin, 2016). Swimming-induced dynamic pressures power engulfment in aquatic vertebrates (Vogel, 1994), but the specific flow pathways and mechanisms of prey capture likely vary among the recognized modes of filter feeding (Goldbogen et al., 2017; Paig-Tran et al., 2013; Sanderson et al., 2001, 2016; Sanderson and Wassersug, 1993). Most species filter feed at relatively low speeds with mouth agape, allowing water and prey to enter the mouth and then pass through an oral filter before exiting the oropharyngeal cavity (Simon et al., 2009; Werth, 2004; Werth and Potvin, 2016). In contrast, rorqual whales (Balaenopteridae; see Glossary) engulf large volumes intermittently at high speeds and then start filtration after the mouth has closed (Goldbogen et al., 2017). Although many vertebrate filter feeders exhibit large body size, we note that this foraging strategy is also exhibited by many smaller species, such as anchovies and sardines. These species can form extremely large aggregations, filter feed at lower trophic levels, and collectively accumulate a tremendous amount of biomass in upwelling habitats (Cury et al., 2000). Interestingly, much larger intermittent filter feeders, such as humpback whales, feed on these types of fish when oceanographic conditions permit (Fleming et al., 2015). With one filter feeder eating another, this trophic linkage reflects the rapid flux of energy through productive ecosystems from very small plankton to the largest whales.

Filter feeding contrasts with particulate feeding (Fig. 1), where prey is targeted and captured individually, and these foraging mechanisms result in divergent energetic efficiencies by affecting the rate of prey intake, the prey types that can be targeted and the mechanical costs of feeding (Carey and Goldbogen, 2017; James and Probyn, 1989; Sanderson and Cech, 1992). We note that this feeding mode characterization is more general than other behavioral frameworks that aim to define behavioral components of foraging such as prey capture, manipulation and processing (Hocking et al., 2017b; Kienle et al., 2017; Marshall and Goldbogen, 2015). Although filter feeders such as baleen (see Glossary) whales (Mysticeti) and whale sharks (Rhincodon typus) are the largest extant marine vertebrates, some particulate feeders have also evolved very large body sizes, suggesting that gigantism can evolve for different reasons and in response to a variety of environmental forces (Lindberg and Pyenson, 2006). Classic examples of gigantic particulate feeders include white sharks (Carcharodon carcharias) and sperm whales (Physeter macrocephalus) in modern oceans. Moreover, several extinct lineages of gigantic particulate feeders (i.e. Leviathan melvillei and Carcharocles megalodon) are also represented in the fossil record (Lambert et al., 2010; Pimiento and Balk, 2015). However, the largest animals among all the ocean giants, specifically in terms of body mass, are represented by several extant cetacean species (Lockyer, 1976). Although filter feeding likely represents the ancestral state of vertebrates (Sanderson and Wassersug, 1993), there is mounting evidence that filter feeding has secondarily evolved from particulate feeding [i.e. via raptorial (see Glossary) or suction prey capture mechanisms] in multiple independent lineages and ultimately led to large body size in both mammals and fishes (Friedman, 2012; Friedman et al., 2010; Geisler et al., 2017; Hocking et al., 2017a; Pyenson, 2017).

Fig. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 1.

Illustration of different marine vertebrates exploiting a bait ball of forage fish. Among these species are many particulate feeders (e.g. cormorants, sea lions and dolphins), those that are largely limited to capturing one prey at a time. This contrasts with bulk filter feeding, characterized by the engulfment of large numbers of prey in a single mouthful, here represented by a humpback whale. Illustration by Alex Boersma.

Glossary

Baleen

A keratinous filtering apparatus exhibited by extant baleen whales (Mysticeti), comprising transverse plates that fray on their lingual edge exposing tubules that act to retain prey as water exits the mouth.

Continuous ram filter feeding

A specific foraging mode exhibited by bowhead whales and right whales; Whales feed at slow speeds with mouth gape, allowing water to pass by baleen and exiting at the back corners of the mouth.

Crown cetacean

A crown group includes all living species and their ancestors back to the most recent common ancestor and all descendants of that ancestor even if extinct.

Edentulous

Toothless.

Flow sensing

Some marine mammals (i.e. pinnipeds) use specialized whiskers, or vibrissae, to track hydrodynamic signatures without the use of other sensory modalities.

Gingiva

The gums.

Lunge feeding or engulfment feeding

A dynamic feeding process in rorqual whales that involves the engulfment and subsequent filtration of a large volume of prey-laden water.

Pinniped

Amphibious, carnivorous marine mammals that include ‘eared’ seals (Otariidae), ‘earless’ seals (Phocidae) and walruses (Odobenidae).

Positive allometry

The disproportionate scaling of a parameter or process that is greater than what is expected by isometry (i.e. proportional increase).

Raptorial

Predatory, primarily with the use of teeth in odontocetes to seize prey.

Rorqual

Term used to describe members of a family of baleen whales (Balaenopteridae) that are characterized by lunge feeding, a unique filter feeding mode that is facilitated by a complex suite of anatomical adaptations.

Stem odontocete

A stem group is a paraphyletic group of extinct species, typically falling outside the crown group.

Suction feeding

A feeding mode characterized by the generation of negative pressure via oropharyngeal expansion to pull in fluid and suspended prey.

The evolutionary transitions from particulate feeding to filter feeding in aquatic vertebrates have followed similar trajectories in different lineages (Friedman, 2012). For example, the parallel morphological changes in both whales and bony fishes (i.e. pachycormiform teleosts) consisted of a reduction (and ultimate loss or near-complete loss) of dentition followed by an increase in body size (Friedman, 2012). Interestingly, the evolutionary innovation of filter feeding in mysticetes, which probably occurred approximately 30 Mya (Geisler et al., 2017; Pyenson, 2017), did not result in an immediate increase in extreme body size; rather, gigantism evolved in multiple baleen whale lineages much more recently (<5 Mya), during the Plio-Pleistocene (Pyenson, 2017; Pyenson and Vermeij, 2016; Slater et al., 2017). The evolution of gigantism in toothed whales (Odontoceti) is less clear, but a broad outline of body size through deep time in this clade suggests a more gradual increase in size since the origin of echolocation (Pyenson, 2017; Pyenson and Sponberg, 2011). Within the clade that comprises sperm whales and their extinct relatives (Physeteroidea), phylogenetic comparative analyses suggest that very large body size also evolved independently in multiple lineages (Boersma and Pyenson, 2015; Lambert et al., 2015). However, the precise timing and the mode of body size evolution among odontocetes remain poorly understood.

Predator–prey interactions at the extremes

The body size of both toothed whales and baleen whales is generally many orders of magnitude larger than their prey (Domenici, 2001; Webb and De Buffrénil, 1990), with some exceptions in specific populations of deep-diving toothed whales that target giant squid or for some killer whales ecotypes that cooperatively hunt baleen whales (Clarke, 1996; Lindberg and Pyenson, 2006). This has important implications for the dynamics that govern the interaction between predator and prey, largely owing to larger animals being less maneuverable than smaller ones (Howland, 1974). Specifically, the scaling of control surfaces relative to body mass and volume indicates that larger animals should have diminished unsteady locomotor performance, thereby yielding lower acceleration and maneuvering capacity (Domenici, 2001; Vogel, 2008; Webb and De Buffrénil, 1990). Because smaller prey should more easily evade larger predators, large aquatic vertebrates have evolved different strategies to efficiently capture smaller prey, such as the use of suction feeding (see Glossary) (Bloodworth and Marshall, 2005; Hocking et al., 2013; Kane and Marshall, 2009; Werth, 2000a), high-speed attacks (Aoki et al., 2012; Marras et al., 2015; Aguilar Soto et al., 2008), ambush-like attack trajectories (Goldbogen et al., 2017, 2013; Huveneers et al., 2015), bulk filter feeding mechanisms with an enlarged engulfment apparatus (Goldbogen et al., 2010; Werth, 2004), coordinated feeding in groups (Benoit-Bird and Au, 2009; Wiley et al., 2011) or the use of appendages (i.e. tails or flukes) that can reach higher accelerations than the main body (Domenici et al., 2000, 2014; Oliver et al., 2013). Alternatively, larger animals can forage in dark environments using echolocation or flow-sensing (see Glossary) structures to gain a sensory advantage on their prey (Hanke et al., 2012; Johnson et al., 2004; Madsen et al., 2005, 2007; Miller et al., 2004). Such low-light habitats can generally occur at any depth at night or, conversely, at any time at extreme depths. However, deep habitats provide large endothermic predators access to prey that may be more vulnerable in the oxygen minimum zone (i.e. physiologically compromised and less able to avoid predation), thereby increasing foraging success (Gilly et al., 2013; Naito et al., 2017) via carefully orchestrated prey-specific approaches in concert with suction feeding (Madsen et al., 2013).

High quality prey often can be found deep in the ocean, so access to this remote habitat is essential to maximize foraging efficiency (Benoit-Bird et al., 2016; Friedlaender et al., 2016; Greene et al., 1988). Air-breathing predators must therefore evolve the capacity to dive longer and deeper to exploit these resources (Halsey et al., 2006; Hochachka, 2000; Mirceta et al., 2013). Diving capacity is influenced by the magnitude of body oxygen stores, the rate of oxygen usage and tolerance for low oxygen (Ponganis, 2015; Ponganis et al., 2011). Factors that influence oxygen storage include body size (Hudson and Jones, 1986), myoglobin content (Mirceta et al., 2013; Noren and Williams, 2000) and a wide range of mechanisms for tolerating low oxygen (Meir et al., 2009; Zenteno-Savin et al., 2010). The rate of oxygen usage is influenced by activity (Martín López et al., 2015; Williams et al., 2000), body condition (Miller et al., 2016), muscle design (Velten et al., 2013) and cardiovascular responses during a breath-hold dive (Ponganis et al., 2011). Despite the wide range of factors that influence diving capacity among diving birds and mammals, diving capacity generally increases with body size (Halsey et al., 2006). This follows from body oxygen stores being generally isometric (Hudson and Jones, 1986) and the metabolic rates exhibiting negative allometry (Uyeda et al., 2017; White et al., 2009), thereby making diving capacity increase by approximately (mass)0.3 (Halsey et al., 2006). However, departures from this general trend may be further influenced by ecological factors, physiological adaptations and behavioral specializations (Ponganis, 2015). Nevertheless, the enhanced diving capacity and, by extension, increased foraging capacity, namely the ability to access and efficiently exploit high quality prey patches, represents a fundamental advantage of large body size in breath-hold divers.

Potential drivers of gigantism in toothed whales

How, when and why did cetaceans evolve their high performance foraging capacity and how does this correspond to the evolution of gigantism? In toothed whales (Fig. 2A), it has been hypothesized that echolocation first evolved for nocturnal epipelagic foraging on diel vertically migrating cephalopods (Lindberg and Pyenson, 2007). Alternatively, stem odontocetes (see Glossary) may have first developed enhanced active auditory scene assessment or echo-ranging acoustic behavior in order to navigate. This ability could then be subsequently adapted to detect large prey or prey aggregations, providing selection pressure for increasingly sophisticated biosonar mechanisms and increased body size for deep-ocean foraging. Recent research has shown that the earliest cetaceans (i.e. stem cetaceans or archeocetes that are not members of Neoceti: Mysticeti+Odontoceti) exhibited unremarkable hearing specializations (neither ultrasonic nor infrasonic) compared with extant species (Geisler, 2017; Mourlam and Orliac, 2017). Nevertheless, unsophisticated echolocation should theoretically work for the normal hearing range of medium-sized mammals (Fenton and Ratcliffe, 2014). Paleontological and comparative studies suggest that biosonar evolved early in odontocetes and played a major role in the radiation and overall ecological success of this clade (Churchill et al., 2016; Geisler et al., 2014; Madsen and Surlykke, 2013; Park et al., 2016). Therefore, echolocation probably preceded the evolution of gigantism in odontocetes (Fig. 2A,B). The ability to exploit prey in low-light conditions would bolster nocturnal epipelagic foraging and the progressive exploration of deeper habitats. Either scenario would have selected for a suite of physiological mechanisms that enhance diving capacity, especially large body size and body plans that minimize the costs of diving (Pabst et al., 2016; Velten et al., 2013), in order to optimize foraging in mesopelagic and, ultimately, bathypelagic ecosystems (Fais et al., 2015). We hypothesize that these selective pressures led to the independent evolution of gigantism in multiple odontocete lineages including sperm whales (Physeteridae) and beaked whales (Ziphiidae), where the largest of them, the sperm whale (Physeter macrocephalus), spend nearly half of their lives at depths in excess of 500 m (Miller et al., 2004; Watwood et al., 2006).

Fig. 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 2.

Body size variation, evolutionary relationships and inferred feeding mode among cetaceans. (A) Cetacean phylogeny and inferred feeding mode for extant species. Modified from Pyenson (2017). (B) A broad estimate of body size evolution for mysticetes (orange) and odontocetes (red) over the past 25 million years. Maxima and minima are shown by the solid and dashed lines, respectively. Modified from Pyenson and Sponberg (2011). (C) Approximate length–mass relationships among extant cetaceans. Rorqual whales (Balaenopteridae) and gray whales (Eschrichtiidae), dark orange; Balaenidae, light orange; beaked whales (Ziphiidae) and sperm whales (Physeteridae), dark red; river dolphins (Platanista, Lipotes, Inioidea) and smaller toothed whales (Delphinoidea), light red. Some estimates may be close to observed maxima, whereas others are estimates based on length–mass relationships from closely related species (Bigg and Wolman, 1975; Bloch et al., 2012, 1996; Bloch and Zachariassen, 1989; Cubbage and Calambokidis, 1987; Folkens and Reeves, 2002; George, 2009; Kenyon, 1961; Lockyer, 1976; Omura et al., 1955; Perryman and Lynn, 2002; Read and Tolley, 1997; Velten et al., 2013).

Potential drivers of gigantism in baleen whales

The gradual increase in toothed whale body size since the Oligocene is markedly different than the much more recent (i.e. Plio-Pleistocene) and perhaps punctuated evolution of gigantism in baleen whales (Pyenson and Sponberg, 2011; Pyenson and Vermeij, 2016; Slater et al., 2017). Although extant baleen whales are edentulous (see Glossary) and use a keratinized oral filter as an obligate feeding mechanism (Goldbogen et al., 2017; Pivorunas, 1979; Szewciw et al., 2010; Thewissen et al., 2017; Werth, 2013), there are several well-described tooth-bearing mysticetes that currently represent the earliest known of all neocetes (Neoceti: Mysticeti+Odontoceti) or crown cetaceans (see Glossary) (Lambert et al., 2017). Because baleen does not readily fossilize, with notable exceptions (Esperante et al., 2008; Gioncada et al., 2016; Marx et al., 2017), it is difficult to infer precisely when filter feeding evolved (Fig. 2A). Two largely competing hypotheses disagree on whether tooth loss preceded the evolution of baleen (Marx et al., 2016; Peredo et al., 2017) or whether toothed mysticetes possessed both teeth and baleen simultaneously for millions of years before the ultimate loss of teeth (Deméré et al., 2008; Geisler et al., 2017). Comparative morphological analyses suggest that early toothed mysticetes were not able to filter feed using their teeth, unlike what is observed in some pinnipeds (see Glossary) such as leopard seals (Hocking et al., 2013). The early-tooth-loss hypothesis suggests that stem mysticetes evolved a dedicated suction feeding capacity, which led to tooth loss, and then baleen later evolved from enlarged gingiva (see Glossary) (Geisler, 2017; Marx et al., 2016; Peredo et al., 2017). This hypothesis is consistent with the observation of reduced dentition in odontocetes that exhibit high-performance suction feeding compared with close relatives (Werth, 2006). Although key fossils suggest that raptorial feeding preceded filter feeding independent of suction-feeding specializations (Geisler et al., 2017), experimental evidence in modern cetaceans demonstrates that different prey-capture mechanisms are not mutually exclusive and may be used together or in sequence for a given feeding morphology (Marshall and Goldbogen, 2015).

Despite the dearth of information available to better understand the early origins of mysticetes, it is thought that obligate filter feeding evolved in the early Oligocene (Pyenson, 2017), and then specialized filter feeding modes [i.e. intermittent ram filter feeding in rorqual whales and continuous ram filter feeding (see Glossary) in balaenid whales] evolved in the early Miocene, approximately 20 million years and 15 million years before the evolution of gigantism (Slater et al., 2017), respectively. The clade-wide shift in the mode of body size evolution is temporally linked to the onset of intensified glaciation and upwelling (Lawrence et al., 2006; Marlow et al., 2000; Slater et al., 2017). Both oceanographic processes are well-known drivers of prey abundance and patchiness in modern feeding hot spots for baleen whales (Croll et al., 2005; Nowacek et al., 2011). Wind-driven upwelling in temperate ecosystems brings cold, nutrient-rich deep water into the light-receiving photic zone, thereby causing a trophic cascade and an overall increase in productivity of planktonic organisms such as krill (Santora et al., 2011). With the influx of bioavailable iron from glacial runoff and ice sheet melting (Bhatia et al., 2013; Hawkings et al., 2014), the enhanced overall productivity is predicted to increase prey abundance (Meire et al., 2017). Although it has yet to be rigorously demonstrated, an increase in overall prey abundance should lead to greater patchiness given the tendency of animals to form aggregations (Parrish and Edelstein-Keshet, 1999). Also, if resources (i.e. primary productivity) become heterogeneously distributed (Martin, 2003), then prey for whales (i.e. zooplankton to forage fish) may also become patchy and be further modulated by large-scale oceanographic forcing (Cotté and Simard, 2005). Increased patchiness will result in a higher density of prey engulfed by baleen whales, thereby increasing the overall energetic efficiency of foraging (Goldbogen et al., 2011; Hazen et al., 2015). Furthermore, greater patchiness is associated with larger size classes of krill (Décima et al., 2010), thus baleen whales that target such patches will likely benefit from higher prey energy densities (Lee et al., 2006).

It is thought that the increased productivity, patchiness and prey densities that resulted from Plio-Pliestocene ocean dynamics provided mysticetes with an evolutionary pathway towards greater body sizes (Slater et al., 2017). Interestingly, a large raptorial shark predator, Carcharocles megalodon, apparently went extinct at this same climatic transition in deep time (Collareta et al., 2017; Pimiento and Clements, 2014), which may have provided release from predation and further facilitated gigantism in mysticetes. Alternatively, resistance to predation could have been a driver for larger body sizes in baleen whales. Nevertheless, it is not clear that C. megalodon preyed on baleen whales (Collareta et al., 2017), given that modern great white sharks (Carcharodon carcharias) typically scavenge on dead baleen whales (Curtis et al., 2006), rather than actively prey on baleen whales (Taylor et al., 2013). Researchers argue that the now extinct giant raptorial sperm whale (L. melvillei) of the Miocene preyed on small to medium-sized mysticetes and thus occupied the same ecological niche as extant transient killer whales (Orcinus orca) (Lambert et al., 2010). Killer whale attacks on multiple baleen whale species have been well documented (Ford and Reeves, 2008), although most attacks target small species or calves and thus may not represent a major force of predation (Ford and Reeves, 2008; Mehta et al., 2007).

If adult individuals of large, extant baleen whales are largely free from predation pressure, then their foraging performance across scale may reflect differences in foraging efficiency that selected for larger body size. The engulfment apparatus of baleen whales exhibits positive allometry (see Glossary) whereby larger whales possess relatively larger skulls, jaws and baleen (Goldbogen et al., 2012, 2010; Pyenson et al., 2013). In intermittent ram filter feeders (i.e. lunge filter feeding), specifically rorqual whales (Balaenopteridae), this pattern of relative growth is also observed in the dimensions of the hyper-extensible oropharyngeal cavity that is lined with specialized groove blubber (Shadwick et al., 2013). As a consequence, the mass-specific engulfment capacity in rorquals increases with body size (Goldbogen et al., 2012, 2010). Thus, for every feeding event, larger whales can enhance their foraging capacity by increasing the amount of prey captured. However, because lunge feeding (see Glossary) is a dynamic event with a large mouth aperture presented to flow at high speed, large amounts of water are accelerated and high drag is incurred (Goldbogen et al., 2007; Potvin et al., 2009; Simon et al., 2012). Despite the high energetic costs that result from increased drag during feeding, the overall efficiency of the feeding lunge is high so long as the density of the targeted prey patch is also high (Goldbogen et al., 2011). However, the high costs of feeding will limit diving capacity, which likely explain the relatively lower foraging dive durations of the largest rorquals (i.e. blue and fin whales) compared with other large whales (Acevedo-Gutierrez et al., 2002; Croll et al., 2001). The cost of a lunge is largely determined by the size of the engulfed water mass, but also the maximum speed just prior to mouth opening (Cade et al., 2016; Goldbogen et al., 2011; Potvin et al., 2009, 2012). Because large whales lunge at higher speeds and have greater mass-specific engulfment capacities, the combined cost progressively limits dive capacity that should otherwise be granted by large body size (Goldbogen et al., 2012). For example, the relatively high cost of feeding in blue whales is estimated to be approximately 60% of the total cost of a foraging dive (Goldbogen et al., 2011). By contrast, the cost of feeding in minke whales is predictably very low because of the very low mass-engulfment capacity, and thus is close to that for steady swimming (Blix and Folkow, 1995; Potvin et al., 2012). An additional cost of relatively larger gulps in bigger whales is that a greater proportion of the limited dive time must be devoted to the purging and filtration of the engulfed water (Goldbogen et al., 2012). Consequently, there is an inverse relationship between the number of lunges per dive and engulfment capacity, such that smaller whales take many small gulps and larger whales take fewer big gulps (Friedlaender et al., 2014). It follows that larger rorquals appear to be forfeiting their diving capacity for enhanced foraging capacity, and this predictably increases the energetic efficiency of feeding at larger sizes (Friedlaender et al., 2014; Goldbogen et al., 2012, 2011, 2010).

Concluding remarks

The mechanisms driving the evolution of gigantism and foraging capacity in cetaceans remains poorly understood. Here we provide different hypotheses that can be tested in future comparative studies. We posit that toothed whales evolved gigantism because echolocation allowed for the progressive invasion of the deep ocean that required larger size and enhanced diving capacity. In contrast, filter-feeding baleen whales evolved gigantism in response to recent changes in the ocean that provided high-quality prey patches, thereby resulting in increased foraging efficiency at greater whale sizes that could, in turn, support such extremes in body mass. With the advent of biologging tag technology, our ability to quantify the diving and foraging performance of cetaceans in their natural environment has greatly increased in the past two decades. The next great challenge is to integrate data from individual studies to test mechanistic hypotheses regarding form, function, physiology and ecology across scales. Specifically, we need to better understand the energetics of foraging and how it compares between particulate-feeding odontocetes and filter-feeding mysticetes. Furthermore, we need to test whether the estimated energetic efficiency of foraging increases with body size in both lineages and by what magnitude. Although direct oxygen consumption measurements cannot yet be made on cetaceans in natural environments, a comparative analysis of feeding rates and foraging performance in species ranging from the small harbor porpoise to the huge blue whale will provide key insights into the physiology and functional ecology of cetaceans. Moreover, these studies will clarify the processes that may have driven body size evolution in a group of mammals that ultimately led to the largest animals ever.

Acknowledgements

We thank David E. Cade, James A. Fahlbusch, Shirel R. Kahane-Rapport, Michael Ladegaard, Jean Potvin, Nicholas D. Pyenson, Paolo S. Segre and Danuta M. Wisniewska for providing useful comments and feedback on the article.

FOOTNOTES

  • Competing interests

    The authors declare no competing or financial interests.

  • Funding

    J.G. was funded in part by grants from the National Science Foundation (IOS-1656676), the Office of Naval Research (N000141612477) and a Terman Fellowship from Stanford University. P.T.M. was funded in part by a J.C. Skou Senior Fellowship at the Aarhus Institute for Advanced Studies, and grants from the Danish Natural Science Research Council.

  • © 2018. Published by The Company of Biologists Ltd

References

  1. ↵
    1. Acevedo-Gutierrez, A.,
    2. Croll, D. A. and
    3. Tershy, B. R.
    (2002). High feeding costs limit dive time in the largest whales. J. Exp. Biol. 205, 1747-1753.
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Aguilar Soto, N. A.,
    2. Johnson, M. P.,
    3. Madsen, P. T.,
    4. Díaz, F.,
    5. Domínguez, I.,
    6. Brito, A. and
    7. Tyack, P.
    (2008). Cheetahs of the deep sea: deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands). J. Anim. Ecol. 77, 936-947. doi:10.1111/j.1365-2656.2008.01393.x
    OpenUrlCrossRefPubMedWeb of Science
  3. ↵
    1. Alexander, R. M.
    (1998). All-time giants: the largest animals and their problems. Palaeontology 41, 1231-1245.
    OpenUrlGeoRefWeb of Science
  4. ↵
    1. Alexander, R. M.
    (2005). Models and the scaling of energy costs for locomotion. J. Exp. Biol. 208, 1645-1652. doi:10.1242/jeb.01484
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Aoki, K.,
    2. Amano, M.,
    3. Mori, K.,
    4. Kourogi, A.,
    5. Kubodera, T. and
    6. Miyazaki, N.
    (2012). Active hunting by deep-diving sperm whales: 3D dive profiles and maneuvers during bursts of speed. Mar. Ecol. Prog. Ser. 444, 289-301. doi:10.3354/meps09371
    OpenUrlCrossRef
  6. ↵
    1. Benoit-Bird, K. J. and
    2. Au, W. W. L.
    (2009). Cooperative prey herding by the pelagic dolphin, Stenella longirostris. J. Acoust. Soc. Am. 125, 125-137. doi:10.1121/1.2967480
    OpenUrlCrossRefPubMedWeb of Science
  7. ↵
    1. Benoit-Bird, K. J.,
    2. Southall, B. L. and
    3. Moline, M. A.
    (2016). Predator-guided sampling reveals biotic structure in the bathypelagic. Proc. R. Soc. B 283, 20152457. doi:10.1098/rspb.2015.2457
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Bhatia, M. P.,
    2. Kujawinski, E. B.,
    3. Das, S. B.,
    4. Breier, C. F.,
    5. Henderson, P. B. and
    6. Charette, M. A.
    (2013). Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nature Geoscience 6, 274. doi:10.1038/ngeo1746
    OpenUrlCrossRefGeoRef
  9. ↵
    1. Bigg, M. A. and
    2. Wolman, A. A.
    (1975). Live-capture killer whale (Orcinus orca) fishery, British Columbia and Washington, 1962–73. J. Fish. Board Canada 32, 1213-1221. doi:10.1139/f75-140
    OpenUrlCrossRef
  10. ↵
    1. Blix, A. S. and
    2. Folkow, L. P.
    (1995). Daily energy expenditure in free living minke whales. Acta Physiol. Scand. 153, 61-66. doi:10.1111/j.1748-1716.1995.tb09834.x
    OpenUrlCrossRefPubMed
  11. ↵
    1. Bloch, D. and
    2. Zachariassen, M.
    (1989). The “Skinn” values of pilot whales in the Faroe Islands. An evaluation and a corrective proposal. N. Atlantic Stud. 1, 39-56.
    OpenUrl
  12. ↵
    1. Bloch, D.,
    2. Desportes, G.,
    3. Zachariassen, M. and
    4. Christensen, I.
    (1996). The northern bottlenose whale in the Faroe Islands, 1584-1993. J. Zool. 239, 123-140. doi:10.1111/j.1469-7998.1996.tb05441.x
    OpenUrlCrossRef
  13. ↵
    1. Bloch, D.,
    2. Desportes, G.,
    3. Harvey, P.,
    4. Lockyer, C. and
    5. Mikkelsen, B.
    (2012). Life history of Risso's dolphin (Grampus griseus) (G. Cuvier, 1812) in the Faroe Islands. Aquat. Mamm. 38, 250. doi:10.1578/AM.38.3.2012.250
    OpenUrlCrossRef
  14. ↵
    1. Bloodworth, B. and
    2. Marshall, C. D.
    (2005). Feeding kinematics of Kogia and Tursiops (Odontoceti: Cetacea): characterization of suction and ram feeding. J. Exp. Biol. 208, 3721-3730. doi:10.1242/jeb.01807
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Boersma, A. T. and
    2. Pyenson, N. D.
    (2015). Albicetus oxymycterus, a new generic name and redescription of a basal physeteroid (Mammalia, Cetacea) from the Miocene of California, and the evolution of body size in sperm whales. PLoS ONE 10, e0135551. doi:10.1371/journal.pone.0135551
    OpenUrlCrossRef
  16. ↵
    1. Cade, D. E.,
    2. Friedlaender, A. S.,
    3. Calambokidis, J. and
    4. Goldbogen, J. A.
    (2016). Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617-2624. doi:10.1016/j.cub.2016.07.037
    OpenUrlCrossRef
  17. ↵
    1. Carey, N. and
    2. Goldbogen, J. A.
    (2017). Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax. J. Exp. Biol. doi:10.1242/jeb.158337
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Castellini, M. A. and
    2. Rea, L. D.
    (1992). The biochemistry of natural fasting at its limits. Experientia 48, 575-582. doi:10.1007/BF01920242
    OpenUrlCrossRefPubMedWeb of Science
  19. ↵
    1. Churchill, M.,
    2. Martinez-Caceres, M.,
    3. de Muizon, C.,
    4. Mnieckowski, J. and
    5. Geisler, J. H.
    (2016). The origin of high-frequency hearing in whales. Curr. Biol. 26, 2144-2149. doi:10.1016/j.cub.2016.06.004
    OpenUrlCrossRef
  20. ↵
    1. Clarke, M. R.
    (1996). Cephalopods as prey. III. Cetaceans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1053-1065. doi:10.1098/rstb.1996.0093
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Collareta, A.,
    2. Lambert, O.,
    3. Landini, W.,
    4. Di Celma, C.,
    5. Malinverno, E.,
    6. Varas-Malca, R.,
    7. Urbina, M. and
    8. Bianucci, G.
    (2017). Did the giant extinct shark Carcharocles megalodon target small prey? Bite marks on marine mammal remains from the late Miocene of Peru. Palaeogeogr. Palaeoclimatol. Palaeoecol. 469, 84-91. doi:10.1016/j.palaeo.2017.01.001
    OpenUrlCrossRef
  22. ↵
    1. Cotté, C. and
    2. Simard, Y.
    (2005). Formation of dense krill patches under tidal forcing at whale feeding hot spots in the St. Lawrence Estuary. Mar. Ecol. Prog. Ser. 288, 199-210. doi:10.3354/meps288199
    OpenUrlCrossRef
  23. ↵
    1. Croll, D. A.,
    2. Acevedo-Gutiérrez, A.,
    3. Tershy, B. R. and
    4. Urbán-Ramirez, J.
    (2001). The diving behavior of blue and fin whales: is dive duration shorter than expected based on oxygen stores? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129, 797-809. doi:10.1016/S1095-6433(01)00348-8
    OpenUrlCrossRefPubMed
  24. ↵
    1. Croll, D. A.,
    2. Marinovic, B.,
    3. Benson, S.,
    4. Chavez, F. P.,
    5. Black, N.,
    6. Ternullo, R. and
    7. Tershy, B. R.
    (2005). From wind to whales: trophic links in a coastal upwelling system. Mar. Ecol. Prog. Ser. 289, 117-130. doi:10.3354/meps289117
    OpenUrlCrossRefWeb of Science
  25. ↵
    1. Croll, D.,
    2. Kudela, R. and
    3. Tershy, B. R.
    (2006). Ecosystem impact of the decline of large whales in the North Pacific. In Whales, Whaling and Ocean Ecosystems (ed. J. A. e. a. Estes), pp. 202-214. Berkeley, CA: University of California Press.
  26. ↵
    1. Cubbage, J. C. and
    2. Calambokidis, J.
    (1987). Size-class segregation of bowhead whales discerned through aerial stereophotogrammetry. Mar. Mamm. Sci. 3, 179-185. doi:10.1111/j.1748-7692.1987.tb00160.x
    OpenUrlCrossRef
  27. ↵
    1. Curtis, T. H.,
    2. Kelly, J. T.,
    3. Menard, K. L.,
    4. Laroche, R. K.,
    5. Jones, R. E. and
    6. Klimley, A. P.
    (2006). Observations on the behavior of white sharks scavenging from a whale carcass at Point Reyes, California. Calif. Fish Game 92, 113.
    OpenUrl
  28. ↵
    1. Cury, P.,
    2. Bakun, A.,
    3. Crawford, R. J.,
    4. Jarre, A.,
    5. Quinones, R. A.,
    6. Shannon, L. J. and
    7. Verheye, H. M.
    (2000). Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603-618. doi:10.1006/jmsc.2000.0712
    OpenUrlCrossRefWeb of Science
  29. ↵
    1. Décima, M.,
    2. Ohman, M. D. and
    3. De Robertis, A.
    (2010). Body size dependence of euphausiid spatial patchiness. Limnol. Oceanogr. 55, 777-788. doi:10.4319/lo.2009.55.2.0777
    OpenUrlCrossRef
  30. ↵
    1. Deméré, T. A.,
    2. McGowen, M. R.,
    3. Berta, A. and
    4. Gatesy, J.
    (2008). Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst. Biol. 57, 15-37. doi:10.1080/10635150701884632
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  31. ↵
    1. Domenici, P.
    (2001). The scaling of locomotor performance in predator-prey encounters: from fish to killer whales. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131, 169-182. doi:10.1016/S1095-6433(01)00465-2
    OpenUrlCrossRefPubMedWeb of Science
  32. ↵
    1. Domenici, P.,
    2. Batty, R. S.,
    3. Simila, T. and
    4. Ogam, E.
    (2000). Killer whales (Orcinus orca) feeding on schooling herring (Clupea harengus) using under-water tail-slaps: kinematic analyses of field observations. J. Exp. Biol. 203, 283-294.
    OpenUrlAbstract
  33. ↵
    1. Domenici, P.,
    2. Wilson, A. D. M.,
    3. Kurvers, R. H. J. M.,
    4. Marras, S.,
    5. Herbert-Read, J. E.,
    6. Steffensen, J. F.,
    7. Krause, S.,
    8. Viblanc, P. E.,
    9. Couillaud, P. and
    10. Krause, J.
    (2014). How sailfish use their bills to capture schooling prey. Proc. R. Soc. B 281, 20140444. doi:10.1098/rspb.2014.0444
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Esperante, R.,
    2. Brand, L.,
    3. Nick, K. E.,
    4. Poma, O. and
    5. Urbina, M.
    (2008). Exceptional occurrence of fossil baleen in shallow marine sediments of the Neogene Pisco Formation, Southern Peru. Palaeogeogr. Palaeoclimatol. Palaeoecol. 257, 344-360. doi:10.1016/j.palaeo.2007.11.001
    OpenUrlCrossRef
  35. ↵
    1. Fais, A.,
    2. Aguilar Soto, N.,
    3. Johnson, M.,
    4. Pérez-González, C.,
    5. Miller, P. J. O. and
    6. Madsen, P. T.
    (2015). Sperm whale echolocation behaviour reveals a directed, prior-based search strategy informed by prey distribution. Behav. Ecol. Sociobiol. 69, 663-674. doi:10.1007/s00265-015-1877-1
    OpenUrlCrossRef
  36. ↵
    1. Fenton, M. B. and
    2. Ratcliffe, J. M.
    (2014). Sensory biology: echolocation from click to call, mouth to wing. Curr. Biol. 24, R1160-R1162. doi:10.1016/j.cub.2014.10.073
    OpenUrlCrossRef
  37. ↵
    1. Fleming, A. H.,
    2. Clark, C. T.,
    3. Calambokidis, J. and
    4. Barlow, J.
    (2015). Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Change Biol. 22, 1214-1224.
    OpenUrl
  38. ↵
    1. Folkens, P. A. and
    2. Reeves, R. R.
    (2002). Guide to Marine Mammals of the World, 527pp. New York: National Audubon Society (Random House).
  39. ↵
    1. Ford, J. K. B. and
    2. Reeves, R. R.
    (2008). Fight or flight: antipredator strategies of baleen whales. Mammal. Rev. 38, 50-86. doi:10.1111/j.1365-2907.2008.00118.x
    OpenUrlCrossRef
  40. ↵
    1. Friedlaender, A. S.,
    2. Goldbogen, J. A.,
    3. Nowacek, D. P.,
    4. Read, A. J.,
    5. Johnston, D. and
    6. Gales, N.
    (2014). Feeding rates and under-ice foraging strategies of the smallest lunge filter feeder, the Antarctic minke whale (Balaenoptera bonaerensis). J. Exp. Biol. 217, 2851-2854. doi:10.1242/jeb.106682
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Friedlaender, A. S.,
    2. Johnston, D. W.,
    3. Tyson, R. B.,
    4. Kaltenberg, A.,
    5. Goldbogen, J. A.,
    6. Stimpert, A. K.,
    7. Curtice, C.,
    8. Hazen, E. L.,
    9. Halpin, P. N. and
    10. Read, A. J.
    (2016). Multiple-stage decisions in a marine central-place forager. R. Soc. Open Sci. 3, 160043. doi:10.1098/rsos.160043
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Friedman, M.
    (2012). Parallel evolutionary trajectories underlie the origin of giant suspension-feeding whales and bony fishes. Proc. R. Soc. B Biol. Sci. 279, 944-951. doi:10.1098/rspb.2011.1381
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Friedman, M.,
    2. Shimada, K.,
    3. Martin, L. D.,
    4. Everhart, M. J.,
    5. Liston, J.,
    6. Maltese, A. and
    7. Triebold, M.
    (2010). 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas. Science 327, 990-993. doi:10.1126/science.1184743
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Geisler, J. H.
    (2017). Evolution: hearing and feeding in fossil whales. Curr. Biol. 27, R596-R598. doi:10.1016/j.cub.2017.05.007
    OpenUrlCrossRef
  45. ↵
    1. Geisler, J. H.,
    2. Colbert, M. W. and
    3. Carew, J. L.
    (2014). A new fossil species supports an early origin for toothed whale echolocation. Nature 508, 383. doi:10.1038/nature13086
    OpenUrlCrossRefGeoRefPubMed
  46. ↵
    1. Geisler, J. H.,
    2. Boessenecker, R. W.,
    3. Brown, M. and
    4. Beatty, B. L.
    (2017). The origin of filter feeding in whales. Curr. Biol. 27, 2036-2042.e2. doi:10.1016/j.cub.2017.06.003
    OpenUrlCrossRef
  47. ↵
    1. George, J. C.
    (2009). Growth, Morphology and Energetics of Bowhead Whales (Balaena mysticetus). PhD thesis, University of Alaska Fairbanks.
  48. ↵
    1. Gilly, W. F.,
    2. Beman, J. M.,
    3. Litvin, S. Y. and
    4. Robison, B. H.
    (2013). Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu. Rev. Mar. Sci. 5, 393-420. doi:10.1146/annurev-marine-120710-100849
    OpenUrlCrossRefPubMedWeb of Science
  49. ↵
    1. Gioncada, A.,
    2. Collareta, A.,
    3. Gariboldi, K.,
    4. Lambert, O.,
    5. Di Celma, C.,
    6. Bonaccorsi, E.,
    7. Urbina, M. and
    8. Bianucci, G.
    (2016). Inside baleen: exceptional microstructure preservation in a late Miocene whale skeleton from Peru. Geology 44, 839-842. doi:10.1130/G38216.1
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Goldbogen, J. A.,
    2. Pyenson, N. D. and
    3. Shadwick, R. E.
    (2007). Big gulps require high drag for fin whale lunge feeding. Mar. Ecol. Prog. Ser. 349, 289-301. doi:10.3354/meps07066
    OpenUrlCrossRef
  51. ↵
    1. Goldbogen, J. A.,
    2. Potvin, J. and
    3. Shadwick, R. E.
    (2010). Skull and buccal cavity allometry increase mass-specific engulfment capacity in fin whales. Proc. R. Soc. B Biol. Sci. 277, 861-868. doi:10.1098/rspb.2009.1680
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Goldbogen, J. A.,
    2. Calambokidis, J.,
    3. Oleson, E.,
    4. Potvin, J.,
    5. Pyenson, N. D.,
    6. Schorr, G. and
    7. Shadwick, R. E.
    (2011). Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131-146. doi:10.1242/jeb.048157
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. Goldbogen, J. A.,
    2. Calambokidis, J.,
    3. Croll, D. A.,
    4. McKenna, M. F.,
    5. Oleson, E.,
    6. Potvin, J.,
    7. Pyenson, N. D.,
    8. Schorr, G.,
    9. Shadwick, R. E. and
    10. Tershy, B. R.
    (2012). Scaling of lunge-feeding performance in rorqual whales: mass-specific energy expenditure increases with body size and progressively limits diving capacity. Funct. Ecol. 26, 216-226. doi:10.1111/j.1365-2435.2011.01905.x
    OpenUrlCrossRef
  54. ↵
    1. Goldbogen, J. A.,
    2. Calambokidis, J.,
    3. Friedlaender, A. S.,
    4. Francis, J.,
    5. DeRuiter, S. L.,
    6. Stimpert, A. K.,
    7. Falcone, E. and
    8. Southall, B. L.
    (2013). Underwater acrobatics by the world's largest predator: 360 degrees rolling manoeuvres by lunge-feeding blue whales. Biol. Lett. 9, 20120986. doi:10.1098/rsbl.2012.0986
    OpenUrlCrossRefPubMed
  55. ↵
    1. Goldbogen, J. A.,
    2. Cade, D. E.,
    3. Calambokidis, J.,
    4. Friedlaender, A. S.,
    5. Potvin, J.,
    6. Segre, P. S. and
    7. Werth, A. J.
    (2017). How baleen whales feed: the biomechanics of engulfment and filtration. Annu. Rev. Mar. Sci. 9, 367-386. doi:10.1146/annurev-marine-122414-033905
    OpenUrlCrossRef
  56. ↵
    1. Greene, C. H.,
    2. Wiebe, P. H.,
    3. Burczynski, J. and
    4. Youngbluth, M. J.
    (1988). Acoustical detection of high-density krill demersal layers in the submarine canyons off Georges Bank. Science 241, 359. doi:10.1126/science.241.4863.359
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. Halsey, L. G.,
    2. Butler, P. J. and
    3. Blackburn, T. M.
    (2006). A phylogenetic analysis of the allometry of diving. Am. Nat. 167, 276-287. doi:10.1086/499439
    OpenUrlCrossRefPubMedWeb of Science
  58. ↵
    1. Hanke, W.,
    2. Wieskotten, S.,
    3. Niesterok, B.,
    4. Miersch, L.,
    5. Witte, M.,
    6. Brede, M.,
    7. Leder, A. and
    8. Dehnhardt, G.
    (2012). Hydrodynamic perception in pinnipeds. In Nature-inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 119 (ed. C. Tropea, H. Bleckmann), pp. 255-270. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-28302-4_16
    OpenUrlCrossRef
  59. ↵
    1. Hawkings, J. R.,
    2. Wadham, J. L.,
    3. Tranter, M.,
    4. Raiswell, R.,
    5. Benning, L. G.,
    6. Statham, P. J.,
    7. Tedstone, A.,
    8. Nienow, P.,
    9. Lee, K. and
    10. Telling, J.
    (2014). Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929. doi:10.1038/ncomms4929
    OpenUrlCrossRef
  60. ↵
    1. Hazen, E. L.,
    2. Friedlaender, A. S. and
    3. Goldbogen, J. A.
    (2015). Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469. doi:10.1126/sciadv.1500469
    OpenUrlFREE Full Text
  61. ↵
    1. Hochachka, P. W.
    (2000). Pinniped diving response mechanism and evolution: a window on the paradigm of comparative biochemistry and physiology. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126, 435-458. doi:10.1016/S1095-6433(00)00231-2
    OpenUrlCrossRefPubMed
  62. ↵
    1. Hocking, D. P.,
    2. Evans, A. R. and
    3. Fitzgerald, E. M. G.
    (2013). Leopard seals (Hydrurga leptonyx) use suction and filter feeding when hunting small prey underwater. Polar Biol. 36, 211-222. doi:10.1007/s00300-012-1253-9
    OpenUrlCrossRefWeb of Science
  63. ↵
    1. Hocking, D. P.,
    2. Marx, F. G.,
    3. Fitzgerald, E. M. G. and
    4. Evans, A. R.
    (2017a). Ancient whales did not filter feed with their teeth. Biol. Lett. 13, 20170348. doi:10.1098/rsbl.2017.0348
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Hocking, D. P.,
    2. Marx, F. G.,
    3. Park, T.,
    4. Fitzgerald, E. M. G. and
    5. Evans, A. R.
    (2017b). A behavioural framework for the evolution of feeding in predatory aquatic mammals. Proc. R. Soc. B Biol. Sci. 284, 20162750. doi:10.1098/rspb.2016.2750
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Howland, H. C.
    (1974). Optimal strategies for predator avoidance: the relative importance of speed and manoeuvrability. J. Theor. Biol. 47, 333-350. doi:10.1016/0022-5193(74)90202-1
    OpenUrlCrossRefPubMedWeb of Science
  66. ↵
    1. Hudson, D. M. and
    2. Jones, D. R.
    (1986). The influence of body mass on the endurance to restrained submergence in the Pekin duck. J. Exp. Biol. 120, 351-367.
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Huveneers, C.,
    2. Holman, D.,
    3. Robbins, R.,
    4. Fox, A.,
    5. Endler, J. A. and
    6. Taylor, A. H.
    (2015). White sharks exploit the sun during predatory approaches. Am. Nat. 185, 562-570. doi:10.1086/680010
    OpenUrlCrossRef
  68. ↵
    1. James, A. G. and
    2. Probyn, T.
    (1989). The relationship between respiration rate, swimming speed and feeding behaviour in the cape anchovy Engraulis capensis Gilchris. J. Exp. Mar. Biol. Ecol. 131, 81-100. doi:10.1016/0022-0981(89)90001-4
    OpenUrlCrossRef
  69. ↵
    1. Johnson, M.,
    2. Madsen, P. T.,
    3. Zimmer, W. M. X.,
    4. Aguilar de Soto, N. and
    5. Tyack, P. L.
    (2004). Beaked whales echolocate on prey. Proc. R. Soc. Lond. B Biol. Sci. 271, S383-S386. doi:10.1098/rsbl.2004.0208
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Kane, E. A. and
    2. Marshall, C. D.
    (2009). Comparative feeding kinematics and performance of odontocetes: belugas, Pacific white-sided dolphins and long-finned pilot whales. J. Exp. Biol. 212, 3939-3950. doi:10.1242/jeb.034686
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Kenyon, K. W.
    (1961). Cuvier beaked whales stranded in the Aleutian Islands. J. Mammal. 42, 71-76. doi:10.2307/1377244
    OpenUrlCrossRef
  72. ↵
    1. Kienle, S. S.,
    2. Law, C. J.,
    3. Costa, D. P.,
    4. Berta, A. and
    5. Mehta, R. S.
    (2017). Revisiting the behavioural framework of feeding in predatory aquatic mammals. Proc. R. Soc. B Biol. Sci. 284, 20171035. doi:10.1098/rspb.2017.1035
    OpenUrlFREE Full Text
  73. ↵
    1. Lambert, O.,
    2. Bianucci, G.,
    3. Post, K.,
    4. De Muizon, C.,
    5. Salas-Gismondi, R.,
    6. Urbina, M. and
    7. Reumer, J.
    (2010). The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. Nature 466, 105. doi:10.1038/nature09067
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  74. ↵
    1. Lambert, O.,
    2. Collareta, A.,
    3. Landini, W.,
    4. Post, K.,
    5. Ramassamy, B.,
    6. Di Celma, C.,
    7. Urbina, M. and
    8. Bianucci, G.
    (2015). No deep diving: evidence of predation on epipelagic fish for a stem beaked whale from the Late Miocene of Peru. Proc. R. Soc. B Biol. Sci., 282, 20151530. doi:10.1098/rspb.2015.1530
    OpenUrlCrossRef
  75. ↵
    1. Lambert, O.,
    2. Martínez-Cáceres, M.,
    3. Bianucci, G.,
    4. Di Celma, C.,
    5. Salas-Gismondi, R.,
    6. Steurbaut, E.,
    7. Urbina, M. and
    8. de Muizon, C.
    (2017). Earliest mysticete from the Late Eocene of Peru sheds new light on the origin of baleen whales. Curr. Biol. 27, 1535-1541.e2. doi:10.1016/j.cub.2017.04.026
    OpenUrlCrossRef
  76. ↵
    1. Lawrence, K. T.,
    2. Liu, Z. and
    3. Herbert, T. D.
    (2006). Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science 312, 79-83. doi:10.1126/science.1120395
    OpenUrlAbstract/FREE Full Text
  77. ↵
    1. Lee, R. F.,
    2. Hagen, W. and
    3. Kattner, G.
    (2006). Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307, 273-306. doi:10.3354/meps307273
    OpenUrlCrossRefWeb of Science
  78. ↵
    1. Lindberg, D. R. and
    2. Pyenson, N. D.
    (2006). Evolutionary patterns in Cetacea. Fishing up prey size through deep time. In Whales, Whaling and Ocean Ecosystems (ed. J. A. Estes, D. P. Demaster, D. F. Doak, T. M. Williams and R. L. Brownell Jr..), pp. 67-81. Oakland: University of California Press.
  79. ↵
    1. Lindberg, D. R. and
    2. Pyenson, N. D.
    (2007). Things that go bump in the night: evolutionary interactions between cephalopods and cetaceans in the tertiary. Lethaia 40, 335-343. doi:10.1111/j.1502-3931.2007.00032.x
    OpenUrlCrossRefGeoRef
  80. ↵
    1. Lindstedt, S. L. and
    2. Boyce, M. S.
    (1985). Seasonality, fasting endurance, and body size in mammals. Am. Nat. 125, 873-878. doi:10.1086/284385
    OpenUrlCrossRefWeb of Science
  81. ↵
    1. Lockyer, C.
    (1976). Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259-273. doi:10.1093/icesjms/36.3.259
    OpenUrlCrossRef
  82. ↵
    1. Madsen, P. T. and
    2. Surlykke, A.
    (2013). Functional convergence in bat and toothed whale biosonars. Physiology 28, 276-283. doi:10.1152/physiol.00008.2013
    OpenUrlCrossRefPubMed
  83. ↵
    1. Madsen, P. T.,
    2. Johnson, M.,
    3. de Soto, N. A.,
    4. Zimmer, W. and
    5. Tyack, P.
    (2005). Biosonar performance of foraging beaked whales (Mesoplodon densirostris). J. Exp. Biol. 208, 181-194. doi:10.1242/jeb.01327
    OpenUrlAbstract/FREE Full Text
  84. ↵
    1. Madsen, P. T.,
    2. Wilson, M.,
    3. Johnson, M. P.,
    4. Hanlon, R. T.,
    5. Bocconcelli, A.,
    6. Aguilar De Soto, N. and
    7. Tyack, P. L.
    (2007). Clicking for calamari: toothed whales can echolocate squid Loligo pealeii. Aquatic Biol. 1, 141-150.
    OpenUrl
  85. ↵
    1. Madsen, P. T.,
    2. de Soto, N. A.,
    3. Arranz, P. and
    4. Johnson, M.
    (2013). Echolocation in Blainville's beaked whales (Mesoplodon densirostris). J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199, 451-469. doi:10.1007/s00359-013-0824-8
    OpenUrlCrossRefPubMed
  86. ↵
    1. Marlow, J. R.,
    2. Lange, C. B.,
    3. Wefer, G. and
    4. Rosell-Melé, A.
    (2000). Upwelling intensification as part of the Pliocene-Pleistocene climate transition. Science 290, 2288-2291.
    OpenUrlAbstract/FREE Full Text
  87. ↵
    1. Marras, S.,
    2. Noda, T.,
    3. Steffensen, J. F.,
    4. Svendsen, M. B. S.,
    5. Krause, J.,
    6. Wilson, A. D. M.,
    7. Kurvers, R. H. J. M.,
    8. Herbert-Read, J.,
    9. Boswell, K. M. and
    10. Domenici, P.
    (2015). Not so fast: swimming behavior of sailfish during predator–prey interactions using high-speed video and accelerometry. Integr. Comp. Biol. 55, 719-727. doi:10.1093/icb/icv017
    OpenUrlCrossRefPubMed
  88. ↵
    1. Marshall, C. D. and
    2. Goldbogen, J. A.
    (2015). Feeding mechanisms. In Marine Mammal Physiology: Requisites for Ocean Living (ed. M. A. Castellini and J. Mellish), pp. 95-118. Boca Raton, FL: CRC Press.
  89. ↵
    1. Martin, A. P.
    (2003). Phytoplankton patchiness: the role of lateral stirring and mixing. Prog. Oceanogr. 57, 125-174. doi:10.1016/S0079-6611(03)00085-5
    OpenUrlCrossRefWeb of Science
  90. ↵
    1. Martín López, L. M.,
    2. Miller, P. J. O.,
    3. Aguilar de Soto, N. and
    4. Johnson, M.
    (2015). Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives. J. Exp. Biol. 218, 1325-1338. doi:10.1242/jeb.106013
    OpenUrlAbstract/FREE Full Text
  91. ↵
    1. Marx, F. G.,
    2. Hocking, D. P.,
    3. Park, T.,
    4. Ziegler, T.,
    5. Evans, A. R. and
    6. Fitzgerald, E. M.
    (2016). Suction feeding preceded filtering in baleen whale evolution. Memoirs Museum Victoria 75, 71-82. doi:10.24199/j.mmv.2016.75.04
    OpenUrlCrossRef
  92. ↵
    1. Marx, F. G.,
    2. Collareta, A.,
    3. Gioncada, A.,
    4. Post, K.,
    5. Lambert, O.,
    6. Bonaccorsi, E.,
    7. Urbina, M. and
    8. Bianucci, G.
    (2017). How whales used to filter: exceptionally preserved baleen in a Miocene cetotheriid. J. Anat. 231, 212-220. doi:10.1111/joa.12622
    OpenUrlCrossRef
  93. ↵
    1. McCauley, D. J.,
    2. Pinsky, M. L.,
    3. Palumbi, S. R.,
    4. Estes, J. A.,
    5. Joyce, F. H. and
    6. Warner, R. R.
    (2015). Marine defaunation: animal loss in the global ocean. Science 347, 1255641. doi:10.1126/science.1255641
    OpenUrlAbstract/FREE Full Text
  94. ↵
    1. Mehta, A. V.,
    2. Allen, J. M.,
    3. Constantine, R.,
    4. Garrigue, C.,
    5. Jann, B.,
    6. Jenner, C.,
    7. Marx, M. K.,
    8. Matkin, C. O.,
    9. Mattila, D. K.,
    10. Minton, G. et al.
    (2007). Baleen whales are not important as prey for killer whales Orcinus orca in high-latitude regions. Mar. Ecol. Prog. Ser. 348, 297-307. doi:10.3354/meps07015
    OpenUrlCrossRef
  95. ↵
    1. Meir, J. U.,
    2. Champagne, C. D.,
    3. Costa, D. P.,
    4. Williams, C. L. and
    5. Ponganis, P. J.
    (2009). Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. Am. J. Physiol.– Regul. Integr. Comp. Physiol. 297, R927-R939. doi:10.1152/ajpregu.00247.2009
    OpenUrlCrossRefPubMedWeb of Science
  96. ↵
    1. Meire, L.,
    2. Mortensen, J.,
    3. Meire, P.,
    4. Juul-Pedersen, T.,
    5. Sejr, M. K.,
    6. Rysgaard, S.,
    7. Nygaard, R.,
    8. Huybrechts, P. and
    9. Meysman, F. J. R.
    (2017). Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 23, 5344-5357. doi:10.1111/gcb.13801
    OpenUrlCrossRef
  97. ↵
    1. Millar, J. S. and
    2. Hickling, G. J.
    (1990). Fasting endurance and the evolution of mammalian body size. Funct. Ecol. 4, 5-12. doi:10.2307/2389646
    OpenUrlCrossRef
  98. ↵
    1. Miller, P. J. O.,
    2. Johnson, M. P. and
    3. Tyack, P. L.
    (2004). Sperm whale behaviour indicates the use of echolocation click buzzes ‘creaks’ in prey capture. Proc. R. Soc. Lond. B Biol. Sci. 271, 2239-2247. doi:10.1098/rspb.2004.2863
    OpenUrlAbstract/FREE Full Text
  99. ↵
    1. Miller, P.,
    2. Narazaki, T.,
    3. Isojunno, S.,
    4. Aoki, K.,
    5. Smout, S. and
    6. Sato, K.
    (2016). Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus). J. Exp. Biol. 219, 2458-2468. doi:10.1242/jeb.137349
    OpenUrlAbstract/FREE Full Text
  100. ↵
    1. Mirceta, S.,
    2. Signore, A. V.,
    3. Burns, J. M.,
    4. Cossins, A. R.,
    5. Campbell, K. L. and
    6. Berenbrink, M.
    (2013). Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science 340, 1234192. doi:10.1126/science.1234192
    OpenUrlAbstract/FREE Full Text
  101. ↵
    1. Motta, P. J.,
    2. Maslanka, M.,
    3. Hueter, R. E.,
    4. Davis, R. L.,
    5. de la Parra, R.,
    6. Mulvany, S. L.,
    7. Habegger, M. L.,
    8. Strother, J. A.,
    9. Mara, K. R.,
    10. Gardiner, J. M. et al.
    (2010). Feeding anatomy, filter-feeding rate, and diet of whale sharks Rhincodon typus during surface ram filter feeding off the Yucatan Peninsula, Mexico. Zoology 113, 199-212. doi:10.1016/j.zool.2009.12.001
    OpenUrlCrossRef
  102. ↵
    1. Mourlam, M. J. and
    2. Orliac, M. J.
    (2017). Infrasonic and ultrasonic hearing evolved after the emergence of modern whales. Curr. Biol. 27, 1776-1781.e9. doi:10.1016/j.cub.2017.04.061
    OpenUrlCrossRef
  103. ↵
    1. Naito, Y.,
    2. Costa, D. P.,
    3. Adachi, T.,
    4. Robinson, P. W.,
    5. Peterson, S. H.,
    6. Mitani, Y. and
    7. Takahashi, A.
    (2017). Oxygen minimum zone: an important oceanographic habitat for deep-diving northern elephant seals, Mirounga angustirostris. Ecol. Evol. 7, 6259-6270. doi:10.1002/ece3.3202
    OpenUrlCrossRef
  104. ↵
    1. Noren, S. R. and
    2. Williams, T. M.
    (2000). Body size and skeletal muscle myoglobin of cetaceans: adaptations for maximizing dive duration. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126, 181-191. doi:10.1016/S1095-6433(00)00182-3
    OpenUrlCrossRefPubMedWeb of Science
  105. ↵
    1. Nowacek, D. P.,
    2. Friedlaender, A. S.,
    3. Halpin, P. N.,
    4. Hazen, E. L.,
    5. Johnston, D. W.,
    6. Read, A. J.,
    7. Espinasse, B.,
    8. Zhou, M. and
    9. Zhu, Y.
    (2011). Super-aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula. Plos One 6, e19173. doi:10.1371/journal.pone.0019173
    OpenUrlCrossRefPubMed
  106. ↵
    1. Oliver, S. P.,
    2. Turner, J. R.,
    3. Gann, K.,
    4. Silvosa, M. and
    5. Jackson, T. D. U.
    (2013). Thresher sharks use tail-slaps as a hunting strategy. PLoS ONE 8, e67380. doi:10.1371/journal.pone.0067380
    OpenUrlCrossRefPubMed
  107. ↵
    1. Omura, H.,
    2. Fujino, K. and
    3. Kimura, S.
    (1955). Beaked whale Berardius bairdi of Japan, with notes on Ziphius cavirostris. Sci. Rep. Whales Res. Inst. 10, 89-132.
    OpenUrl
  108. ↵
    1. Pabst, D. A.,
    2. McLellan, W. A. and
    3. Rommel, S. A.
    (2016). How to build a deep diver: the extreme morphology of mesoplodonts. Integr. Comp. Biol. 56, 1337-1348. doi:10.1093/icb/icw126
    OpenUrlCrossRefPubMed
  109. ↵
    1. Paig-Tran, E. W. M.,
    2. Kleinteich, T. and
    3. Summers, A. P.
    (2013). The filter pads and filtration mechanisms of the devil rays: variation at macro and microscopic scales. J. Morphol. 274, 1026-1043. doi:10.1002/jmor.20160
    OpenUrlCrossRefPubMed
  110. ↵
    1. Park, T.,
    2. Fitzgerald, E. M. G. and
    3. Evans, A. R.
    (2016). Ultrasonic hearing and echolocation in the earliest toothed whales. Biol. Lett. 12, 20160060. doi:10.1098/rsbl.2016.0060
    OpenUrlAbstract/FREE Full Text
  111. ↵
    1. Parrish, J. K. and
    2. Edelstein-Keshet, L.
    (1999). Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99-101. doi:10.1126/science.284.5411.99
    OpenUrlAbstract/FREE Full Text
  112. ↵
    1. Payne, J. L.,
    2. Bush, A. M.,
    3. Heim, N. A.,
    4. Knope, M. L. and
    5. McCauley, D. J.
    (2016). Ecological selectivity of the emerging mass extinction in the oceans. Science 353, 1284-1286. doi:10.1126/science.aaf2416
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Peredo, C. M.,
    2. Pyenson, N. D. and
    3. Boersma, A. T.
    (2017). Decoupling tooth loss from the evolution of baleen in whales. Front. Mar. Sci. 4, 67. doi:10.3389/fmars.2017.00067
    OpenUrlCrossRef
  114. ↵
    1. Perryman, W. L. and
    2. Lynn, M. S.
    (2002). Evaluation of nutritive condition and reproductive status of migrating gray whales (Eschrichtius robustus) based on analysis of photogrammetric data. J. Cetacean Res. Manag. 4, 155-164.
    OpenUrl
  115. ↵
    1. Peters, R. H.
    (1983). The Ecological Implications of Body Size. Cambridge: Cambridge University Press.
  116. ↵
    1. Pimiento, C. and
    2. Balk, M. A.
    (2015). Body-size trends of the extinct giant shark Carcharocles megalodon: a deep-time perspective on marine apex predators. Paleobiology 41, 479-490. doi:10.1017/pab.2015.16
    OpenUrlAbstract/FREE Full Text
  117. ↵
    1. Pimiento, C. and
    2. Clements, C. F.
    (2014). When did Carcharocles megalodon become extinct? A new analysis of the fossil record. PLoS ONE 9, e111086. doi:10.1371/journal.pone.0111086
    OpenUrlCrossRefPubMed
  118. ↵
    1. Pivorunas, A.
    (1979). Feeding mechanisms of baleen whales. Am. Sci. 67, 432-440.
    OpenUrlWeb of Science
  119. ↵
    1. Ponganis, P. J.
    (2015). Diving Physiology of Marine Mammals and Seabirds. Cambridge: Cambridge University Press.
  120. ↵
    1. Ponganis, P. J.,
    2. Meir, J. U. and
    3. Williams, C. L.
    (2011). In pursuit of Irving and Scholander: a review of oxygen store management in seals and penguins. J. Exp. Biol. 214, 3325-3339. doi:10.1242/jeb.031252
    OpenUrlAbstract/FREE Full Text
  121. ↵
    1. Potvin, J.,
    2. Goldbogen, J. A. and
    3. Shadwick, R. E.
    (2009). Passive versus active engulfment: Verdict from trajectory simulations of lunge-feeding fin whales Balaenoptera physalus. J. R. Soc. Interface 6, 1005-1025. doi:10.1098/rsif.2008.0492
    OpenUrlAbstract/FREE Full Text
  122. ↵
    1. Potvin, J.,
    2. Goldbogen, J. A. and
    3. Shadwick, R. E.
    (2012). Metabolic expenditures of lunge feeding rorquals across scale: implications for the evolution of filter feeding and the limits to maximum body size. PLoS ONE 7, e44854. doi:10.1371/journal.pone.0044854
    OpenUrlCrossRefPubMed
  123. ↵
    1. Pyenson, N. D.
    (2017). The ecological rise of whales chronicled by the fossil record. Curr. Biol. 27, R558-R564. doi:10.1016/j.cub.2017.05.001
    OpenUrlCrossRef
  124. ↵
    1. Pyenson, N. D. and
    2. Sponberg, S. N.
    (2011). Reconstructing body size in extinct crown Cetacea (Neoceti) using allometry, phylogenetic methods and tests from the fossil record. J. Mamm. Evol. 18, 269-288. doi:10.1007/s10914-011-9170-1
    OpenUrlCrossRef
  125. ↵
    1. Pyenson, N. D. and
    2. Vermeij, G. J.
    (2016). The rise of ocean giants: maximum body size in Cenozoic marine mammals as an indicator for productivity in the Pacific and Atlantic Oceans. Biol. Lett. 12, 20160186. doi:10.1098/rsbl.2016.0186
    OpenUrlAbstract/FREE Full Text
  126. ↵
    1. Pyenson, N. D.,
    2. Goldbogen, J. A. and
    3. Shadwick, R. E.
    (2013). Mandible allometry in extant and fossil Balaenopteridae (Cetacea: Mammalia): The largest vertebrate skeletal element and its role in rorqual lunge feeding. Biol. J. Linn. Soc. 108, 586-599. doi:10.1111/j.1095-8312.2012.02032.x
    OpenUrlCrossRef
  127. ↵
    1. Read, A. J. and
    2. Tolley, K. A.
    (1997). Postnatal growth and allometry of harbour porpoises from the Bay of Fundy. Can. J. Zool. 75, 122-130. doi:10.1139/z97-016
    OpenUrlCrossRef
  128. ↵
    1. Ripple, W. J.,
    2. Wolf, C.,
    3. Newsome, T. M.,
    4. Hoffmann, M.,
    5. Wirsing, A. J. and
    6. McCauley, D. J.
    (2017). Extinction risk is most acute for the world's largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678-10683. doi:10.1073/pnas.1702078114
    OpenUrlAbstract/FREE Full Text
  129. ↵
    1. Rubenstein, D. I. and
    2. Koehl, M. A. R.
    (1977). Mechanisms of filter feeding: some theoretical considerations. Am. Nat. 111, 981-994. doi:10.1086/283227
    OpenUrlCrossRefWeb of Science
  130. ↵
    1. Sanderson, S. L. and
    2. Cech, J. J. Jr..
    (1992). Energetic cost of suspension feeding versus particulate feeding by juvenile Sacramento blackfish. Trans. Am. Fish. Soc. 121, 149-157. doi:10.1577/1548-8659(1992)121<0149:ECOSFV>2.3.CO;2
    OpenUrlCrossRef
  131. ↵
    1. Sanderson, S. L. and
    2. Wassersug, R.
    (1990). Suspension-feeding vertebrates. Sci. Am. 262, 96-101. doi:10.1038/scientificamerican0390-96
    OpenUrlCrossRef
  132. ↵
    1. Sanderson, S. L. and
    2. Wassersug, R.
    (1993). Convergent and alternative designs for vertebrate suspension feeding. In The Skull: Functional and Evolutionary Mechanisms, Vol. 3 (ed. J. Hanken and B. K. Hall), pp. 37-112. Chicago, IL: University of Chicago Press.
    OpenUrl
  133. ↵
    1. Sanderson, S. L.,
    2. Cheer, A. Y.,
    3. Goodrich, J. S.,
    4. Graziano, J. D. and
    5. Callan, W. T.
    (2001). Crossflow filtration in suspension-feeding fishes. Nature 412, 439-441. doi:10.1038/35086574
    OpenUrlCrossRefPubMedWeb of Science
  134. ↵
    1. Sanderson, S. L.,
    2. Roberts, E.,
    3. Lineburg, J. and
    4. Brooks, H.
    (2016). Fish mouths as engineering structures for vortical cross-step filtration. Nat. Commun. 7, 11092. doi:10.1038/ncomms11092
    OpenUrlCrossRef
  135. ↵
    1. Santora, J. A.,
    2. Sydeman, W. J.,
    3. Schroeder, I. D.,
    4. Wells, B. K. and
    5. Field, J. C.
    (2011). Mesoscale structure and oceanographic determinants of krill hotspots in the California Current: implications for trophic transfer and conservation. Prog. Oceanogr. 91, 397-409. doi:10.1016/j.pocean.2011.04.002
    OpenUrlCrossRef
  136. ↵
    1. Schmidt-Nielsen, K.
    (1984). Scaling: Why is Animal Size so Important? Cambridge: Cambridge University Press.
  137. ↵
    1. Shadwick, R. E.,
    2. Goldbogen, J. A.,
    3. Potvin, J.,
    4. Pyenson, N. D. and
    5. Vogl, A. W.
    (2013). Novel muscle and connective tissue design enables high extensibility and controls engulfment volume in lunge-feeding rorqual whales. J. Exp. Biol. 216, 2691-2701. doi:10.1242/jeb.081752
    OpenUrlAbstract/FREE Full Text
  138. ↵
    1. Simon, M.,
    2. Johnson, M.,
    3. Tyack, P. and
    4. Madsen, P. T.
    (2009). Behaviour and kinematics of continuous ram filtration in bowhead whales (Balaena mysticetus). Proc. R. Soc. B Biol. Sci. 276. doi:10.1098/rspb.2009.1135
    OpenUrlAbstract/FREE Full Text
  139. ↵
    1. Simon, M.,
    2. Johnson, M. and
    3. Madsen, P. T.
    (2012). Keeping momentum with a mouthful of water: Behavior and kinematics of humpback whale lunge feeding. J. Exp. Biol. 215, 3786-3798. doi:10.1242/jeb.071092
    OpenUrlAbstract/FREE Full Text
  140. ↵
    1. Sinclair, A. R. E.,
    2. Mduma, S. and
    3. Brashares, J. S.
    (2003). Patterns of predation in a diverse predator-prey system. Nature 425, 288. doi:10.1038/nature01934
    OpenUrlCrossRefPubMedWeb of Science
  141. ↵
    1. Slater, G. J.,
    2. Goldbogen, J. A. and
    3. Pyenson, N. D.
    (2017). Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc. R. Soc. B Biol. Sci., 284, 20170546. doi:10.1098/rspb.2017.0546
    OpenUrlAbstract/FREE Full Text
  142. ↵
    1. Szewciw, L. J.,
    2. de Kerckhove, D. G.,
    3. Grime, G. W. and
    4. Fudge, D. S.
    (2010). Calcification provides mechanical reinforcement to whale baleen alpha-keratin. Proc. R. Soc. B Biol. Sci. 277, 2597-2605. doi:10.1098/rspb.2010.0399
    OpenUrlAbstract/FREE Full Text
  143. ↵
    1. Taylor, J. K. D.,
    2. Mandelman, J. W.,
    3. McLellan, W. A.,
    4. Moore, M. J.,
    5. Skomal, G. B.,
    6. Rotstein, D. S. and
    7. Kraus, S. D.
    (2013). Shark predation on North Atlantic right whales (Eubalaena glacialis) in the southeastern United States calving ground. Mar. Mamm. Sci. 29, 204-212. doi:10.1111/j.1748-7692.2011.00542.x
    OpenUrlCrossRef
  144. ↵
    1. Thewissen, J. G. M.,
    2. Hieronymus, T. L.,
    3. George, J. C.,
    4. Suydam, R.,
    5. Stimmelmayr, R. and
    6. McBurney, D.
    (2017). Evolutionary aspects of the development of teeth and baleen in the bowhead whale. J. Anat. 230, 549-566. doi:10.1111/joa.12579
    OpenUrlCrossRef
  145. ↵
    1. Uyeda, J. C.,
    2. Pennell, M. W.,
    3. Miller, E. T.,
    4. Maia, R. and
    5. McClain, C. R.
    (2017). The evolution of energetic scaling across the vertebrate tree of life. Am. Nat. 190, 185-199. doi:10.1086/692326
    OpenUrlCrossRef
  146. ↵
    1. Velten, B. P.,
    2. Dillaman, R. M.,
    3. Kinsey, S. T.,
    4. McLellan, W. A. and
    5. Pabst, D. A.
    (2013). Novel locomotor muscle design in extreme deep-diving whales. J. Exp. Biol. 216, 1862-1871. doi:10.1242/jeb.081323
    OpenUrlAbstract/FREE Full Text
  147. ↵
    1. Vermeij, G. J.
    (2016). Gigantism and its implications for the history of life. PLoS ONE 11, e0146092. doi:10.1371/journal.pone.0146092
    OpenUrlCrossRefPubMed
  148. ↵
    1. Vogel, S.
    (1994). Life in Moving Fluids: The Physical Biology of Flow. Princeton, NJ: Princeton University Press.
  149. ↵
    1. Vogel, S.
    (2008). Modes and scaling in aquatic locomotion. Integr. Comp. Biol. 48, 702-712. doi:10.1093/icb/icn014
    OpenUrlCrossRefPubMedWeb of Science
  150. ↵
    1. Watanabe, Y. Y.,
    2. Goldman, K. J.,
    3. Caselle, J. E.,
    4. Chapman, D. D. and
    5. Papastamatiou, Y. P.
    (2015). Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes. Proc. Natl Acad. Sci. USA 112, 6104-6109.
    OpenUrlAbstract/FREE Full Text
  151. ↵
    1. Watwood, S. L.,
    2. Miller, P. J. O.,
    3. Johnson, M.,
    4. Madsen, P. T. and
    5. Tyack, P. L.
    (2006). Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus). J. Anim. Ecol. 75, 814-825. doi:10.1111/j.1365-2656.2006.01101.x
    OpenUrlCrossRefPubMedWeb of Science
  152. ↵
    1. Webb, P. W. and
    2. De Buffrénil, V.
    (1990). Locomotion in the biology of large aquatic vertebrates. Trans. Am. Fish. Soc. 119, 629-641. doi:10.1577/1548-8659(1990)119<0629:LITBOL>2.3.CO;2
    OpenUrlCrossRef
  153. ↵
    1. Weibel, E. R. and
    2. Hoppeler, H.
    (2005). Exercise-induced maximal metabolic rate scales with muscle aerobic capacity. J. Exp. Biol. 208, 1635-1644. doi:10.1242/jeb.01548
    OpenUrlAbstract/FREE Full Text
  154. ↵
    1. Werth, A.
    (2000a). A kinematic study of suction feeding and associated behavior in the long-finned pilot whale, Globicephala melas (Traill). Mar. Mamm. Sci. 16, 299-314. doi:10.1111/j.1748-7692.2000.tb00926.x
    OpenUrlCrossRef
  155. ↵
    1. Werth, A. J.
    (2000b). Feeding in marine mammals. In Feeding: Form, Function and Evolution in Tetrapod Vertebrates (ed. K. Schwenk), pp. 475-514. New York: Academic Press.
  156. ↵
    1. Werth, A. J.
    (2004). Models of hydrodynamic flow in the bowhead whale filter feeding apparatus. J. Exp. Biol. 207, 3569-3580. doi:10.1242/jeb.01202
    OpenUrlAbstract/FREE Full Text
  157. ↵
    1. Werth, A. J.
    (2006). Mandibular and dental variation and the evolution of suction feeding in Odontoceti. J. Mammal. 87, 579-588. doi:10.1644/05-MAMM-A-279R1.1
    OpenUrlCrossRefWeb of Science
  158. ↵
    1. Werth, A. J.
    (2013). Flow-dependent porosity and other biomechanical properties of mysticete baleen. J. Exp. Biol. 216, 1152-1159. doi:10.1242/jeb.078931
    OpenUrlAbstract/FREE Full Text
  159. ↵
    1. Werth, A. J. and
    2. Potvin, J.
    (2016). Baleen hydrodynamics and morphology of cross-flow filtration in balaenid whale suspension feeding. PLoS ONE 11, e0150106. doi:10.1371/journal.pone.0150106
    OpenUrlCrossRef
  160. ↵
    1. West, G. B.,
    2. Woodruff, W. H. and
    3. Brown, J. H.
    (2002). Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl Acad. Sci. USA 99, 2473-2478. doi:10.1073/pnas.012579799
    OpenUrlAbstract/FREE Full Text
  161. ↵
    1. White, C. R.,
    2. Blackburn, T. M. and
    3. Seymour, R. S.
    (2009). Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution 63, 2658-2667. doi:10.1111/j.1558-5646.2009.00747.x
    OpenUrlCrossRefPubMedWeb of Science
  162. ↵
    1. Wiley, D.,
    2. Ware, C.,
    3. Bocconcelli, A.,
    4. Cholewiak, D. M.,
    5. Friedlaender, A. S.,
    6. Thompson, M. and
    7. Weinrich, M.
    (2011). Underwater components of humpback whale bubble-net feeding behaviour. Behaviour 148, 575-602. doi:10.1163/000579511X570893
    OpenUrlCrossRef
  163. ↵
    1. Williams, T. M.
    (1999). The evolution of cost efficient swimming in marine mammals: limits to energetic optimization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 193-201. doi:10.1098/rstb.1999.0371
    OpenUrlAbstract/FREE Full Text
  164. ↵
    1. Williams, T. M.
    (2006). Physiological and ecological consequences of extreme body size in whales. In Whales, Whaling, and Ocean Ecosystems (ed. J. A. Estes, D. P. DeMaster, D. F. Doak, T. M. Williams and R. L. Brownell), pp. 191-201. Berkeley, CA: University of California Press.
  165. ↵
    1. Williams, T. M.,
    2. Davis, R. W.,
    3. Fuiman, L. A.,
    4. Francis, J.,
    5. Le Boeuf, B. L.,
    6. Horning, M.,
    7. Calambokidis, J. and
    8. Croll, D. A.
    (2000). Sink or swim: strategies for cost-efficient diving by marine mammals. Science 288, 133-136. doi:10.1126/science.288.5463.133
    OpenUrlAbstract/FREE Full Text
  166. ↵
    1. Zenteno-Savin, T.,
    2. St. Leger, J. and
    3. Ponganis, P. J.
    (2010). Hypoxemic and ischemic tolerance in emperor penguins. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 152, 18-23. doi:10.1016/j.cbpc.2010.02.007
    OpenUrlCrossRefPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

Keywords

  • Scaling
  • Odontocetes
  • Mysticetes
  • Diving
  • Filter feeding
  • Echolocation

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The evolution of foraging capacity and gigantism in cetaceans
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
COMMENTARY
The evolution of foraging capacity and gigantism in cetaceans
J. A. Goldbogen, P. T. Madsen
Journal of Experimental Biology 2018 221: jeb166033 doi: 10.1242/jeb.166033 Published 12 June 2018
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
COMMENTARY
The evolution of foraging capacity and gigantism in cetaceans
J. A. Goldbogen, P. T. Madsen
Journal of Experimental Biology 2018 221: jeb166033 doi: 10.1242/jeb.166033 Published 12 June 2018

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • ABSTRACT
    • Introduction
    • Predator–prey interactions at the extremes
    • Potential drivers of gigantism in toothed whales
    • Potential drivers of gigantism in baleen whales
    • Concluding remarks
    • Acknowledgements
    • FOOTNOTES
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Do endotherms have thermal performance curves?
  • Thermal robustness of biomechanical processes
  • Help, there are ‘omics’ in my comparative physiology!
Show more COMMENTARY

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Welcome to JEB’s new Editor Monica Daley

We are pleased to welcome Monica Daley to JEB’s Editorial team. Monica has had a long association with JEB before taking up her new role, overseeing peer review of neuromuscular physiology, terrestrial biomechanics and integrative physiology of locomotion.


In the field with Robyn Hetem

Continuing our fieldwork series, Robyn Hetem reflects on working with species ranging from aardvark to zebra, and the impact COVID-19 has had on fieldwork.


Read & Publish participation continues to grow

“It is particularly encouraging for early career researchers, as it allows them to display their research globally without the need to find costs to cover the open access option.”

Professor Fernando Montealegre-Z (University of Lincoln) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Nocturnal reef residents have deep-sea-like eyes

Fanny de Busserolles and colleagues from The University of Queensland have discovered that the eyes of nocturnal reef fish have multibank retinas, layers of photoreceptors, similar to the eyes of deep-sea fish that live in dim light conditions.


Mechanisms underlying gut microbiota–host interactions in insects

In their Review, Konstantin Schmidt and Philipp Engel summarise recent findings about the mechanisms involved in gut colonisation and the provisioning of beneficial effects in gut microbiota–insect symbiosis.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992