Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
COMMENTARY
Insect navigation: do ants live in the now?
Paul Graham, Michael Mangan
Journal of Experimental Biology 2015 218: 819-823; doi: 10.1242/jeb.065409
Paul Graham
School of Life Sciences, University of Sussex, CCNR, JMS Building, Brighton BN1 9QG, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: paulgr@sussex.ac.uk
Michael Mangan
School of Life Sciences, University of Sussex, CCNR, JMS Building, Brighton BN1 9QG, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading

ABSTRACT

Visual navigation is a critical behaviour for many animals, and it has been particularly well studied in ants. Decades of ant navigation research have uncovered many ways in which efficient navigation can be implemented in small brains. For example, ants show us how visual information can drive navigation via procedural rather than map-like instructions. Two recent behavioural observations highlight interesting adaptive ways in which ants implement visual guidance. Firstly, it has been shown that the systematic nest searches of ants can be biased by recent experience of familiar scenes. Secondly, ants have been observed to show temporary periods of confusion when asked to repeat a route segment, even if that route segment is very familiar. Taken together, these results indicate that the navigational decisions of ants take into account their recent experiences as well as the currently perceived environment.

Introduction

As animals move through the world, they gain experience of the paths leading to locations of importance, such as plentiful food sites or the safety of home. Individuals learn and replay the guidance instructions that produce these paths and thus many animals display habitual and idiosyncratic route-following behaviour (rats: Calhoun, 1962; humans: Dee, 2005; monkeys: Di Fiore and Suarez, 2007; pigeons: Biro et al., 2004; ants: Kohler and Wehner, 2005; Mangan and Webb, 2012). The resultant routes may not be the most efficient in terms of path length but through route repetition, individuals presumably gain reliability, safety and computational efficiency.

By studying this habitual route behaviour in ants, it is hoped that we might discover the basic mechanisms that give rise to this common form of visual navigation. Ants have both small brains and low resolution visual systems and thus may, in some way, embody the minimal computational requirements for visually guided route navigation. Furthermore, we have a chance to uncover these mechanisms because of the practicalities of studying ant foraging behaviour in natural environments (e.g. Narendra et al., 2013; Wystrach et al., 2014). A corollary of searching for efficient mechanisms is that as a discipline we take a bottom-up approach. This entails looking for the simplest mechanisms that can account for observed behaviour (e.g. Mangan and Webb, 2009) and waiting for new behavioural evidence before changing one's current model (Wystrach and Graham, 2012).

Glossary

Path integration

Path integration (PI) is a strategy by which animals continuously combine odometric and compass information into a vector that can be used to guide a direct path home, even from previously unvisited terrain.

Full vector ants

During foraging, ants will accumulate a home vector through PI, which gives the bearing and distance back to their nest. Such ants are termed full vector (FV) ants.

Zero vector ants

In contrast to FV ants, ants that have travelled back to the nest will have ‘run off’ their home vector and are hence termed zero vector (ZV) ants.

View-based guidance

This is the general term used for navigation strategies where a remembered visual scene is used to set a direction or drive a search for a location, through comparison with the currently perceived scene.

Rotational image matching

This is a particular style of view-based guidance where a remembered view is used only to recover a direction.

A simple model of ant visual route navigation

We can learn much about the style of ant route navigation from simple behavioural demonstrations. If desert ants are allowed to become familiar with a permanent feeder location, then individual foragers will develop habitual idiosyncratic foraging paths between nest and feeder in both directions (see Fig. 1). The fact that these paths are idiosyncratic suggests that ants are guided by individually learnt cues rather than social cues such as pheromones. In fact, we know route guidance is based mainly on visual cues (Collett, 1992; Harrison et al., 1989; Reid et al., 2011; Wehner et al., 1996) but can also include information about magnetic anomalies (Buehlmann et al., 2012), odour (Steck et al., 2009) and wind direction (Wolf and Wehner, 2000). If experienced ants are displaced from one location on their route to another (e.g. from the nest back to the middle of the route), they will recapitulate the remainder of their habitual route seemlessly (Fig. 1) (Kohler and Wehner, 2005; Mangan and Webb, 2012). Thus, the learnt guidance memories that are needed to control a route can be implemented independently of path integration (PI), the innate mechanism by which animals can keep track of their approximate position relative to the start point of a journey (Muller and Wehner, 1988).

Fig. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 1.

How simple visual guidance can lead to route following. (A) The paths (grey lines) of an individual ant across multiple trips from a feeder (F) to her nest (N). The ant shows an idiosyncratic route through shrubs and tussocks (green shaded areas). If the ant is returned to a location along the familiar route (black arrow), she immediately recovers the habitual homeward route. (B,C) This visually guided route performance could be explained by a simple algorithm. An ant that is experienced with this route has a memory of panoramic scenes corresponding to the appropriate directions for different parts of the route. To negotiate the route, ants could rotate on the spot trying to match their current view to previously stored views (B). When assessing the familiarity of the views experienced at different headings, a minima would be found at the heading parallel to the route (C). Repeating this procedure would then lead the animal home without it ever having to resolve its absolute position. Data redrawn from Mangan and Webb (2012) and P. Ardin, F. Peng, M. Mangan, K. Lagogiannis and B. Webb (submitted).

Although we know vision is important for guiding habitual routes, there are many different ways of using vision for navigation. A simple strategy is to aim for an identifiable beacon as flies innately aim towards vertical black bars (e.g. in Buridan's ass paradigm; Bülthoff et al., 1982). At the opposite end of the complexity spectrum, one might use visual information to build a detailed metric map of the world that can subsequently provide navigational information (Bailey and Durrant-Whyte, 2006; Durrant-Whyte and Bailey, 2006). Such a use of visual information allows an agent to answer the ‘Where am I?’ question.

Somewhere in between innate attraction and complex map building, one could also use visual cues for navigation with simpler, more procedural strategies. That is, instead of calculating where you are within a map, you could instead seek to answer the ‘What do I do?’ question (e.g. Cartwright and Collett, 1983). Imagine, for instance, standing at a junction between woodland tracks. If one takes a photograph when facing the desired direction, that photo is specific to the location and orientation at which the photo was taken. Therefore, it can be used to select the same track when encountering the same junction in the future. One has to simply rotate until the currently perceived scene matches the photo. Using the photo in this way tells you ‘what to do’ (i.e. which direction to move in) without telling you exactly where you are. Similarly, ants could use a set of views, remembered whilst travelling along a route, to set appropriate directions when trying to recapitulate that route (Baddeley et al., 2012; Philippides et al., 2011). That is, if a route-following ant was to compare a range of views from different orientations at their current position (cf. Wystrach et al., 2014) with their visual memories from a previous successful route, then the best match would be found when the ant aligned similarly to the previous completion of the route (Fig. 1B,C). This scheme of rotational image matching ties actions (moving in a particular direction) to visual scenes, giving an agent a set of scene-action behaviours that can guide a familiar route.

What's more, when using such a scheme, an agent (be it ant, human or robot) can live in the now, responding only to the currently perceived scene and comparing only that scene to its visual memory. Even if the agent's memories are not stored in a strict sequence, they will still be used in the correct order because in a visually rich world the best match between the current view and the visual memory will generally correspond with the memory that is most appropriate for that location. That is, the visual sequence is a property of the route through the world and does not have to also be a property of the visual memory. Thus, we have outlined an attractively simple visual navigation scheme whereby ants might use a set of scene-action responses in order to guide a familiar route. However, two recent observations of ant behaviour during route guidance cause us to reconsider this simple model of visual route guidance.

Hysteresis in ant navigation: Wystrach et al. (2013)

When a returning forager is captured close to her nest and placed in a visually unfamiliar situation, she is deprived of the two primary sources of information that usually drive navigation. Because she was near to the nest (after walking from the feeder) she is a zero vector (ZV) ant, so called because she no longer has any directional information provided by her PI system. She is also in an unfamiliar visual situation and so her stored visual memories will not produce coherent directional information from view-based guidance. In this situation, we would expect ants to engage a symmetrical systematic search for familiar terrain (Wehner and Srinivasan, 1981), which has long been thought of as the last chance strategy for ants.

Wystrach and colleagues investigated the role of visual experience in the systematic search of the Australian ant Melophorus bagoti by firstly establishing a straight route between an active nest and a permanent feeder. Returning foragers were then captured near their nest and released on unfamiliar ground (Fig. 2). Counter to expectation, these ZV ants did not always produce the randomly distributed headings predicted by a systematic search strategy. Rather, the departure bearings of ants showed a clear bias in the nest–feeder compass direction (i.e. they backtracked opposite to the just-travelled bearing). Intriguingly, the key determining factor as to whether ants would show this bias was whether they had recently experienced the visual surroundings close to their nest (compare Fig. 2A and C with 2B).

Fig. 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 2.

Ants show a biased search after a glimpse of their nest environs. Ants are allowed to become familiar with an enclosed route between a feeder and their nest. Following training, ants will be familiar, to differing extents, with the nest–feeder (N–F) surroundings. In the schematic diagram of the experimental design (left), familiarity is represented by greyscale with black showing the most familiar areas. Individuals are transported to distant unfamiliar terrains and their departure bearings measured on a goniometer. (A) Ants are captured close to their nest (zero vector, ZV, with recent near-nest experience). (B) Ants complete the first half of the route twice (ZV with no recent near-nest experience). (C) Ants complete the first half of the route twice and are then allowed to experience the area close to the nest for a short time (ZV with no recent near-nest experience). The circular histograms on the right indicate the heading in 15 deg sectors; the grey arrow shows the mean vector. Numbers indicate the scale, so that the centre is 0 and the radius extends to this number of ants per sector. Only ants in conditions A and C show a bias in their headings, with ants much more likely to head in the nest–feeder direction. Data redrawn from Wystrach et al. (2013).

Why is it sensible for ants to backtrack in this way? Well, the behaviour seems adaptive if one considers the degree to which ants are familiar with different parts of their world. For ants that have experienced the route multiple times, the ground surrounding the nest and route will have become familiar to different degrees. The areas close to the nest on its feeder side will be the most familiar, with lateral areas less familiar, and areas behind the nest the least familiar (Fig. 2, left). Therefore, with no information from PI and finding itself in a visually unfamiliar part of the world, but crucially remembering being near the nest a moment previously, a sensible ant might reasonably expect that it has found itself on the far side of the nest, which is possible as passive displacements, by gusts of wind, are commonplace for these ants (Wystrach and Schwarz, 2013). Thus, in this situation, its best option is to backtrack to recover familiar territory. The behaviour certainly seems functional, but what does it suggest about the underlying mechanisms? We return to this question later.

Hysteresis in ant navigation: Collett (2014)

As outlined above, one of the canonical demonstrations of ant navigation behaviour is that foragers with habitual visually guided routes can recapitulate those routes independently of their PI system. This has been demonstrated many times (e.g. Kohler and Wehner, 2005; Mangan and Webb, 2012; Wehner et al., 1996; Wystrach et al., 2011). Collett (2014) returned to this question and analysed in detail the paths of ZV ants when asked to recapitulate a visually guided route. Individual Cataglyphis fortis were allowed to develop routes through a sparse environment dominated by a single conspicuous black cylinder. These ants reliably take a curved route to detour around such an object and individuals stabilise on habitual curved routes with the visual guidance instructions for these routes learnt quickly (Collett, 2010). Yet, when ZV ants were returned to the start of their route, not all ants immediately recognised and followed it, as in previous work. Instead, Collett reports a new behaviour within a significant subset of ants (Collett, 2014). During the initial part of the route, often after seeming to begin a normal homeward path, these ants appeared confused for a prolonged period. Eventually, the ants recommenced their habitual route home (Fig. 3A) but were, on average, no further along the route when they resumed a fast direct path. We can conclude that the confusion is not just a search for a more familiar location within a visually difficult route. Another possibility is that the confusion is due to a unique conflict between visual guidance cues and PI state in this particular experimental configuration. However, by manipulating the state of the ant's PI system, by starting ants further behind the feeder, one can create a group who experience the same visual scene with the same PI state but are not experiencing the familiar route for the second time (Fig. 3B). In this situation, unlike the ants in Fig. 3A, there is no extensive confusion. So, once more we see that recent visual experience modulates navigational behaviour, in this case leading to confusion despite ants being on familiar terrain.

Fig. 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 3.

Route recapitulation creates confusion in navigating ants. Individual ant foragers are allowed to develop habitual routes that detour to the side of a large black cylinder (black dot). In two experimental conditions, ants are transported to positions behind the feeder (F) and released. N, nest. Schematic diagrams of the experimental conditions are given in A and C and the paths of the experimental ants are given in B and D. (A,B) Zero vector ants are released from a position behind the feeder. A significant number of ants show confusion (black path segments) in the area between the feeder and the cylinder, before resuming their normal routes (grey path segments). (C,D) Ants are taken from the feeder and released 18 m behind the feeder position such that at the start of the familiar route they have the same path integration state as in A. These ants, which have not recently completed the return route, show significantly less confusion. Data redrawn from Collett (2014).

It is puzzling that ants show temporary confusion when asked to repeat a portion of a familiar route: what is the functional value of temporarily disabling some of your visual route memories? And, why has nobody identified this behaviour previously? Effectively disabling a portion of one's visual route memory (just after using it) may be beneficial by focusing attention onto the visual memories that are necessary for subsequent portions of the route. This would result in a reduced search space perhaps increasing efficiency and reducing the chance of aliasing. The failure to observe this behaviour in previous experiments may be due to variations in the visual complexity of experimental environments. Here, Collett (2014) trained ants in a visually sparse environment such that there was a relatively small degree of visual change across the route, meaning those memories that were supressed would act across a larger area and thus the confusion would be across a larger area. In contrast, ZV ants from the study in Fig. 1 were released in a visually dense environment where the spatial extent of any suppressed memories would be much smaller, and as such any confusion would be less conspicuous (Collett, 2014).

Discussion

Both of the recent studies discussed here suggest that ants do not undertake visual navigation by simply acting upon the currently perceived scene. We have two examples of how recent visual experience influences navigational performance. Thus, we have to reconsider the simple model of visual route following that we outlined above.

Cutting-edge algorithms from the mobile robotics domain provide informative examples of how temporal information (recent visual experience) can increase the robustness of visual navigation. For example, with low resolution vision, recognition of a location from the current view alone is hard because of aliasing with other locations along a learned route. However, if one includes recently experienced views, along with the current view, and compares these with the stored route sequence, then robust place recognition can be achieved (Milford and Wyeth, 2012). Stone et al. (2014) have gone further to show that this method, in combination with ant-inspired sky segmented images, is sufficient for route following in complex urban environments across seasons and varying lighting conditions. It appears that engineers have realised the encoding of temporal information is particularly useful for place recognition when visual resources are limited. We may be seeing a convergence of ideas between behavioural studies in insects and engineered autonomous systems.

In the Introduction, we explained our hope that studies of ant navigation might elucidate the minimal computational requirements for visually guided route navigation. We can now reject one minimal model of visual route navigation based on findings in two recent behavioural studies. It may therefore be informative to consider the types of mechanism that might underpin the behaviours presented here. In both examples, the behaviour of interest shows some consideration for the uncertainty inherent in the ant's sense of position. For the Cataglyphis desert ant (Collett, 2014), their uncertainty is high even though they are on familiar ground because they have been asked to repeat a route portion. For the Melophorus ants (Wystrach et al., 2013), their uncertainty is high as they have been transported to unfamiliar test ground. When navigation behaviours can be described in terms of uncertainty, it is tempting to suggest that insects are manipulating mental representations of spatial information along with estimates of the uncertainty of that information. This might suggest a cognitive implementation of navigation where behaviour is decided upon following the mental manipulation of representations of locations, directions and the confidence in these estimates.

Alternatively, these behaviours might be an emergent property of the underlying sensorimotor circuitry rather than higher level spatial representations. By way of example, the data presented in Collett (2014) could be explained in terms of simple habituation of the visual stimulus. That is, as the visual scene remains largely constant across the initial portion of the route, sensory habituation would lead to desensitisation of that particular view such that in the absence of PI guidance, ants would be left with only its systematic search strategy for guidance until the view dishabituates. Yet, habituation alone cannot explain the reversal of heading direction outlined in Wystrach et al. (2013). One possibility might be that this behaviour emerges from adaptation to the sudden removal of a dominant directional signal. For example, ZV ants that have recently viewed the nest (Fig. 2A,C) will have a strong directional preference driven by the familiarity of the nest surroundings. When displaced to unfamiliar surroundings, this cue would be completely removed, which might in turn cause a rebound effect similar to the ‘waterfall illusion’ (Purkinje, 1820), causing the ant to temporally head in the opposite direction. If route memories are considered less strong than visual memories from the nest surroundings, any rebound effect would be far smaller for the ants in Fig. 2B, explaining their classic systematic search behaviour. The two mechanisms described above are at opposite ends of a spectrum of mechanistic explanations for these new results. Further experimentation will allow us to fine-tune our hypothesis and learn more about the computational style of insect navigation.

Behavioural studies of ant navigation continue to highlight robust navigational strategies. That these strategies are discovered in a bottom-up way, with hypotheses driven by natural behaviour, gives us confidence that we have not over-reached in attributing complex mechanisms to these small-brained champion navigators.

Acknowledgements

We are grateful to Matthew Collett and Antoine Wystrach for providing material for figures.

FOOTNOTES

  • Competing interests

    The authors declare no competing or financial interests.

  • Author contributions

    Both authors contributed equally to this paper.

  • Funding

    This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

  • © 2015. Published by The Company of Biologists Ltd

References

  1. ↵
    1. Baddeley, B.,
    2. Graham, P.,
    3. Husbands, P. and and
    4. Philippides, A.
    (2012). A model of ant route navigation driven by scene familiarity. PLoS Comput. Biol. 8, e1002336. doi:10.1371/journal.pcbi.1002336
    OpenUrlCrossRefPubMed
  2. ↵
    1. Bailey, T. and and
    2. Durrant-Whyte, H.
    (2006). Simultaneous localisation and mapping (SLAM): Part II - State of the art. IEEE Robot. Automation Mag. 13, 1-10. doi:10.1109/MRA.2006.1678144
    OpenUrlCrossRef
  3. ↵
    1. Biro, D.,
    2. Meade, J. and and
    3. Guilford, T.
    (2004). Familiar route loyalty implies visual pilotage in the homing pigeon. Proc. Natl. Acad. Sci. USA 101, 17440-17443. doi:10.1073/pnas.0406984101
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Buehlmann, C.,
    2. Hansson, B. S. and and
    3. Knaden, M.
    (2012). Desert ants learn vibration and magnetic landmarks. PLoS ONE 7, e33117. doi:10.1371/journal.pone.0033117
    OpenUrlCrossRefPubMed
  5. ↵
    1. Bülthoff, H.,
    2. Götz, K. G. and and
    3. Herre, M.
    (1982). Recurrent inversion of visual orientation in the walking fly, Drosophila melanogaster. J. Comp. Physiol. 148, 471-481. doi:10.1007/BF00619785
    OpenUrlCrossRef
  6. ↵
    1. Calhoun, J. B.
    (1962). The Ecology and Sociology of the Norway Rat (US Public Health Service Publication no. 1008). Washington, DC: US Government Printing Office.
  7. ↵
    1. Cartwright, B. A. and and
    2. Collett, T. S.
    (1983). Landmark learning in bees. J. Comp. Physiol. A 151, 521-543. doi:10.1007/BF00605469
    OpenUrlCrossRef
  8. ↵
    1. Collett, T. S.
    (1992). Landmark learning and guidance in insects. Philos. Trans. R. Soc. B. Biol. Sci. 337, 295-303. doi:10.1098/rstb.1992.0107
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Collett, M.
    (2010). How desert ants use a visual landmark for guidance along a habitual route. Proc. Natl. Acad. Sci. USA 107, 11638. doi:10.1073/pnas.1001401107
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Collett, M.
    (2014). A desert ant's memory of recent visual experience and the control of route guidance. Proc. R. Soc. B Biol. Sci. 281, 1787. doi:10.1098/rspb.2014.0634
    OpenUrlCrossRef
  11. ↵
    1. Dee, H.
    (2005). Explaining visible behaviour. PhD thesis, University of Leeds.
  12. ↵
    1. Di Fiore, A. and and
    2. Suarez, S. A.
    (2007). Route-based travel and shared routes in sympatric spider and woolly monkeys: cognitive and evolutionary implications. Anim. Cogn. 10, 317-329. doi:10.1007/s10071-006-0067-y
    OpenUrlCrossRefPubMedWeb of Science
  13. ↵
    1. Durrant-Whyte, H. and and
    2. Bailey, T.
    (2006). Simultaneous localization and mapping: part I. IEEE Robot. Automat. Mag. 13, 99-110. doi:10.1109/MRA.2006.1638022
    OpenUrlCrossRef
  14. ↵
    1. Harrison, J. F.,
    2. Fewell, J. H.,
    3. Stiller, T. M. and and
    4. Breed, M. D.
    (1989). Effects of experience on use of orientation cues in the giant tropical ant. Anim. Behav. 37, 869-871. doi:10.1016/0003-3472(89)90076-6
    OpenUrlCrossRef
  15. ↵
    1. Kohler, M. and and
    2. Wehner, R.
    (2005). Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors? Neurobiol. Learn. Mem. 83, 1-12. doi:10.1016/j.nlm.2004.05.011
    OpenUrlCrossRefPubMedWeb of Science
  16. ↵
    1. Mangan, M. and and
    2. Webb, B.
    (2009). Modelling place memory in crickets. Biol. Cybern. 101, 307-323. doi:10.1007/s00422-009-0338-1
    OpenUrlCrossRefPubMed
  17. ↵
    1. Mangan, M. and and
    2. Webb, B.
    (2012). Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav. Ecol. 23, 944-954. doi:10.1093/beheco/ars051
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Milford, M. J. and and
    2. Wyeth, G. F.
    (2012). SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights. 2012 IEEE International Conference on Robotics and Automation, 1643-1649.
  19. ↵
    1. Muller, M. and and
    2. Wehner, R.
    (1988). Path integration in desert ants, Cataglyphis fortis. Proc. Natl. Acad. Sci. USA 85, 5287-5290. doi:10.1073/pnas.85.14.5287
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Narendra, A.,
    2. Gourmaud, S. and and
    3. Zeil, J.
    (2013). Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc. R. Soc. B Biol. Sci. 280, 20130683. doi:10.1098/rspb.2013.0683
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Philippides, A.,
    2. Baddeley, B.,
    3. Cheng, K. and and
    4. Graham, P.
    (2011). How might ants use panoramic views for route navigation? J. Exp. Biol. 214, 445-451. doi:10.1242/jeb.046755
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Purkinje, J. E.
    (1820). Beiträge zur näheren Kenntniss des Schwindels aus heautognostischen Daten. Medicinische Jahrbücher Des Kaiserlich-Königlichen Österreichischen Staates 6, 79-125.
    OpenUrl
  23. ↵
    1. Reid, S. F.,
    2. Narendra, A.,
    3. Hemmi, J. M. and and
    4. Zeil, J.
    (2011). Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. J. Exp. Biol. 214, 363-370. doi:10.1242/jeb.049338
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Steck, K.,
    2. Hansson, B. S. and and
    3. Knaden, M.
    (2009). Smells like home: desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest. Front. Zool. 6, 5. doi:10.1186/1742-9994-6-5
    OpenUrlCrossRefPubMed
  25. ↵
    1. Stone, T.,
    2. Mangan, M.,
    3. Ardin, P. and and
    4. Webb, B.
    (2014). Sky segmentation with ultraviolet images can be used for navigation. In Proceedings of Robotics: Science and Systems X (ed. D. Fox, L. E. Kavraki and and H. Kurniawati). Berkeley: The Robotics: Science and Systems Foundation.
  26. ↵
    1. Wehner, R. and and
    2. Srinivasan, M. V.
    (1981). Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 142, 315-338. doi:10.1007/BF00605445
    OpenUrlCrossRef
  27. ↵
    1. Wehner, R.,
    2. Michel, B. and and
    3. Antonsen, P.
    (1996). Visual navigation in insects: coupling of egocentric and geocentric information. J. Exp. Biol. 199, 129-140.
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Wolf, H. and and
    2. Wehner, R.
    (2000). Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. J. Exp. Biol. 203, 857-868. http://www.ncbi.nlm.nih.gov/pubmed/10667968
    OpenUrlAbstract
  29. ↵
    1. Wystrach, A. and and
    2. Graham, P.
    (2012). What can we learn from studies of insect navigation? Anim. Behav. 84, 13-20. doi:10.1016/j.anbehav.2012.04.017
    OpenUrlCrossRefWeb of Science
  30. ↵
    1. Wystrach, A. and and
    2. Schwarz, S.
    (2013). Ants use a predictive mechanism to compensate for passive displacements by wind. Curr. Biol. 23, R1083-R1085. doi:10.1016/j.cub.2013.10.072
    OpenUrlCrossRefPubMed
  31. ↵
    1. Wystrach, A.,
    2. Schwarz, S.,
    3. Schultheiss, P.,
    4. Beugnon, G. and and
    5. Cheng, K.
    (2011). Views, landmarks, and routes: how do desert ants negotiate an obstacle course? J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 197, 167-179. doi:10.1007/s00359-010-0597-2
    OpenUrlCrossRefPubMed
  32. ↵
    1. Wystrach, A.,
    2. Schwarz, S.,
    3. Baniel, A. and and
    4. Cheng, K.
    (2013). Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit. Proc. R. Soc. B Biol. Sci. 280, 20131677. doi:10.1098/rspb.2013.1677
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Wystrach, A.,
    2. Philippides, A.,
    3. Aurejac, A.,
    4. Cheng, K. and and
    5. Graham, P.
    (2014). Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 200, 615-626. doi:10.1007/s00359-014-0900-8
    OpenUrlCrossRefPubMed
View Abstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

Keywords

  • Ant
  • Navigation
  • Route guidance
  • Visual guidance

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Insect navigation: do ants live in the now?
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
COMMENTARY
Insect navigation: do ants live in the now?
Paul Graham, Michael Mangan
Journal of Experimental Biology 2015 218: 819-823; doi: 10.1242/jeb.065409
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
COMMENTARY
Insect navigation: do ants live in the now?
Paul Graham, Michael Mangan
Journal of Experimental Biology 2015 218: 819-823; doi: 10.1242/jeb.065409

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • ABSTRACT
    • Introduction
    • A simple model of ant visual route navigation
    • Hysteresis in ant navigation: Wystrach et al. (2013)
    • Hysteresis in ant navigation: Collett (2014)
    • Discussion
    • Acknowledgements
    • FOOTNOTES
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Thermal robustness of biomechanical processes
  • Help, there are ‘omics’ in my comparative physiology!
  • Structural plasticity of the avian pectoralis: a case for geometry and the forgotten organelle
Show more COMMENTARY

Similar articles

Subject collections

  • Neuroethology

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Meet the Editors at SICB Virtual 2021

Reserve your place to join some of the journal editors, including Editor-in-Chief Craig Franklin, at our Meet the Editor session on 17 February at 2pm (EST). Don’t forget to view our SICB Subject Collection, featuring relevant JEB papers relating to some of the symposia sessions.


2020 at The Company of Biologists

Despite 2020's challenges, we were able to bring a number of long-term projects and new ventures to fruition. As we enter a new year, join us as we reflect on the triumphs of the last 12 months.


The Big Biology podcast

JEB author Christine Cooper talks to Big Biology about her research. In this fascinating JEB sponsored podcast she tells us how tough zebra finches adjust their physiology to cope with extreme climate events. 


Developmental and reproductive physiology of small mammals at high altitude

Cayleih Robertson and Kathryn Wilsterman focus on high-altitude populations of the North American deer mouse in their review of the challenges and evolutionary innovations of pregnant and nursing small mammals at high altitude.


Read & Publish participation extends worldwide

“Being able to publish Open Access articles free of charge means that my article gets maximum exposure and has maximum impact, and that all my peers can read it regardless of the agreements that their universities have with publishers.”

Professor Roi Holzman (Tel Aviv University) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992