Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
OUTSIDE JEB
Chilled-out iguanas have bird-like lungs
Steve Portugal
Journal of Experimental Biology 2015 218: 650-651; doi: 10.1242/jeb.112102
Steve Portugal
Royal Holloway, University of London
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Steve.Portugal@rhul.ac.uk
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading
Figure1

For decades, birds enjoyed the reputation of being the only known animal group to have unidirectional airflow in their lungs. This unique lung design had long been assumed to be an adaptation to the high oxygen demands of intense activity, and is thought to have enabled the evolution of flight. A unidirectional flow of air through the lungs means there is a constant stream of fresh oxygen being delivered to the bloodstream, whether the bird is breathing in or out – quite unlike that of the mammalian lung. A new study, published in the Proceedings of the National Academy of Sciences, has thrown doubt on the long-held belief that unidirectional airflow in lungs evolved for intense activity and stamina, by finding bird-like lungs in green iguanas – a species not renowned for its flight capabilities or aerobic fitness!

Colleen Farmer and colleagues, based at the University of Utah, USA, designed a series of novel methods for investigating airflow through the lungs of the iguanas. First, the team watched, via an endoscope, as the lizards inhaled harmless particle-laden theatrical smoke, allowing visualisation of the airflow through the lungs. To the team's amazement, the smoke particles only moved in one direction, regardless of whether the iguanas were breathing in or out. Following this surprise, the team then pumped water full of pollen grains through surgically removed lungs, to further clarify how the air flowed through these structures. Coupled with computer simulation models, Farmer and colleagues were able to confirm that the iguana's lungs exhibited unidirectional airflow and the lung design matched that of birds! Given the dramatic difference in natural history between the two groups, it begs the question, why would iguanas have evolved a lung morphology that is typically associated with intense aerobic activity? Moreover, Farmer adds, ‘It even suggests that unidirectional flow is not necessarily important for expanded aerobic capacity’.

These findings imply unidirectional airflow evolved not just for flight but also for some other vital life-history aspect. The authors propose that unidirectional airflow is linked to the ability of reptiles to hold their breath for long durations. Green iguanas are known to swim and dive to avoid predators, and a unidirectional lung design could potentially extend the period the lizards can stay submerged underwater. The iguana's lung design implies that unidirectional airflow evolved both before flight and the first birds and it was more than likely present in a common ancestor over 250,000 million years ago, before the Diapsida group split into the Lepidosauromorpha (tuatara, lizards, snakes) and Archosauromorpha (crocodilians, birds) that we see today. Asked whether this lung design could possibly be an example of convergent evolution, Farmer explains, ‘It would be a striking case of convergence if it turns out to be the case’.

So it appears that birds may have lost their exclusivity with respect to a unidirectional lung design and will now have to share this accolade with certain reptile species. The direction of airflow through the lungs of reptiles has largely been assumed, rather than definitively measured. Consequently, it is likely that further investigations will result in bird-like lung designs being identified in more reptile species, questioning further the exact function of unidirectional airflow.

  • © 2015. Published by The Company of Biologists Ltd

References

    1. Cieri, R. L.,
    2. Craven, B. A.,
    3. Schachner, E. R. and and
    4. Farmer, C. G.
    (2014). New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs. Proc. Natl. Acad. Sci. USA 111, 17218-17223.
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Chilled-out iguanas have bird-like lungs
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
OUTSIDE JEB
Chilled-out iguanas have bird-like lungs
Steve Portugal
Journal of Experimental Biology 2015 218: 650-651; doi: 10.1242/jeb.112102
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
OUTSIDE JEB
Chilled-out iguanas have bird-like lungs
Steve Portugal
Journal of Experimental Biology 2015 218: 650-651; doi: 10.1242/jeb.112102

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Fish want to see the light at the end of the tunnel
  • Stress in the egg makes gull chicks fitter
  • Ogre-faced spiders listen with their legs
Show more OUTSIDE JEB

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Meet the Editors at SICB Virtual 2021

Reserve your place to join some of the journal editors, including Editor-in-Chief Craig Franklin, at our Meet the Editor session on 17 February at 2pm (EST). Don’t forget to view our SICB Subject Collection, featuring relevant JEB papers relating to some of the symposia sessions.


2020 at The Company of Biologists

Despite 2020's challenges, we were able to bring a number of long-term projects and new ventures to fruition. As we enter a new year, join us as we reflect on the triumphs of the last 12 months.


Critical temperature window sends migratory black-headed buntings on their travels

The spring rise in temperature at black-headed bunting overwintering sites is essential for triggering the physical changes that they undergo before embarking on their spring migration – read more.


Developmental and reproductive physiology of small mammals at high altitude

Cayleih Robertson and Kathryn Wilsterman focus on high-altitude populations of the North American deer mouse in their review of the challenges and evolutionary innovations of pregnant and nursing small mammals at high altitude.


Read & Publish participation extends worldwide

“Being able to publish Open Access articles free of charge means that my article gets maximum exposure and has maximum impact, and that all my peers can read it regardless of the agreements that their universities have with publishers.”

Professor Roi Holzman (Tel Aviv University) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992