Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
INSIDE JEB
Wasp masters manipulate web-building slaves
Kathryn Knight
Journal of Experimental Biology 2015 218: 2315 doi: 10.1242/jeb.128678
Kathryn Knight
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Kathryn@biologists.com
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading
Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

A parasitised spider on an orb web. Photo credit: Keizo Takasuka.

Some wasps have unpleasant habits. Hijacking an unsuspecting insect or spider, parasitic wasps incapacitate their hapless victims by taking control of their nervous systems and turning them into zombies. Once the wasp has its victim in its clutches, it deposits its egg on or within the victim's body, ready for the next generation to develop. Keizo Takasuka from Kobe University, Japan, explains that one particular wasp, Reclinervellus nielseni, turns its spider targets (Cyclosa argenteoalba) into drugged navvys whose final act is to construct a tough ‘cocoon’ web from the original orb web to protect the developing wasp pupa after the spider's death. According to Takasuka, C. argenteoalba produce several different styles of web over the course of their lives – ‘orb’ webs when hunting and ‘resting’ webs for protection when moulting – each produced by a specific set of behaviours. However, it wasn't clear which of the spider's behavioural patterns and web-types the wasp was adapting to its own ends.

Intrigued, Takasuka headed to shrines in two nearby cities (Tamba and Sasayama) from mid-April to mid-May ready to collect spiders complete with their webs and parasitic larvae. However, Takasuka recalls that keeping the spiders alive in the lab before their zombie state was triggered was quite a challenge. Some refused to build webs in captivity and he occasionally destroyed the delicate structures when he inadvertently snagged supporting frame threads attached to distant objects. However, after weeks of patiently nurturing the spiders, he was rewarded when 10 obediently constructed cocoon webs for their parasite masters.

Analysing the cocoon webs, Takasuka was struck by their similarity to the resting webs, complete with fluffy decorative structures. And when Takasuka analysed the spiders’ behaviour as they constructed the cocoon webs over a 10 h period, he saw that the manipulated spiders always constructed the new web on the site of the old orb web, painstakingly removing the sticky spiral first, then reinforcing the radial and frame threads and then adding the fibrous web decorations. And, when the web was complete and the wasp larva done with its spider slave, the larva directed the spider to return to the hub of the web before murdering it.

So, the cocoon webs looked like resting webs, but were they true adaptions of the more conventional web? Takasuka and Kensuke Nakata photographed the webs in UV light and were impressed to see the fibrous decorations shining brightly, to deter other insects from inadvertently blundering into the pupa's nursery. And when Tomoki Yasui, Toru Ishigami and Takasuka investigated the strength of the different types of silk that contribute to the web's structure, they were amazed to see that the cocoon web was significantly tougher than the orb and resting webs: the breaking force of the cocoon radius and frame silks was 2.7–40 times greater than that of the orb and resting webs. However, the breaking stress of the silks was not increased significantly, leading Takasuka to suspect that instead of forcing the spiders to alter silk production, the wasp slave-masters were directing the spiders to lay down more fibres to strengthen the cocoon web, which is essentially a reinforced resting web.

Explaining that parasitised spiders transition into zombie web building even when the parasitic larva has been removed, Takasuka also suggests that resting web construction is triggered by the same hormones that control moulting and he suspects that the larva may inject a substance similar to a moulting hormone into the hapless spider during the later stages of its stay, ready to trigger cocoon web building when the larva is ready to pupate.

  • © 2015. Published by The Company of Biologists Ltd

References

    1. Takasuka, K.,
    2. Yasui, T.,
    3. Ishigami, T.,
    4. Nakata, K.,
    5. Matsumoto, R.,
    6. Ikeda K. and
    7. Maeto, K.
    (2015). Host manipulation by an ichneumonid spider ectoparasitoid that takes advantage of preprogrammed web-building behaviour for its cocoon protection. J. Exp. Biol. 218, 2326-2332.doi:10.1242/jeb.122739
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Wasp masters manipulate web-building slaves
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
INSIDE JEB
Wasp masters manipulate web-building slaves
Kathryn Knight
Journal of Experimental Biology 2015 218: 2315 doi: 10.1242/jeb.128678
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
INSIDE JEB
Wasp masters manipulate web-building slaves
Kathryn Knight
Journal of Experimental Biology 2015 218: 2315 doi: 10.1242/jeb.128678

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Wing damage no obstacle for hummingbird hawkmoths
  • Making a difference: the role of comparative biology in tackling climate change
  • Lifestyle difference gives female yellow-billed hornbills the edge
Show more INSIDE JEB

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Welcome to JEB’s new Editor Monica Daley

We are pleased to welcome Monica Daley to JEB’s Editorial team. Monica has had a long association with JEB before taking up her new role, overseeing peer review of neuromuscular physiology, terrestrial biomechanics and integrative physiology of locomotion.


In the field with Robyn Hetem

Continuing our fieldwork series, Robyn Hetem reflects on working with species ranging from aardvark to zebra, and the impact COVID-19 has had on fieldwork.


Read & Publish participation continues to grow

“It is particularly encouraging for early career researchers, as it allows them to display their research globally without the need to find costs to cover the open access option.”

Professor Fernando Montealegre-Z (University of Lincoln) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Nocturnal reef residents have deep-sea-like eyes

Fanny de Busserolles and colleagues from The University of Queensland have discovered that the eyes of nocturnal reef fish have multibank retinas, layers of photoreceptors, similar to the eyes of deep-sea fish that live in dim light conditions.


Mechanisms underlying gut microbiota–host interactions in insects

In their Review, Konstantin Schmidt and Philipp Engel summarise recent findings about the mechanisms involved in gut colonisation and the provisioning of beneficial effects in gut microbiota–insect symbiosis.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992