ABSTRACT
Many animals produce louder, longer or more repetitious vocalizations to compensate for increases in environmental noise. Biological costs of increased vocal effort in response to noise, including energetic costs, remain empirically undefined in many taxa, particularly in marine mammals that rely on sound for fundamental biological functions in increasingly noisy habitats. For this investigation, we tested the hypothesis that an increase in vocal effort would result in an energetic cost to the signaler by experimentally measuring oxygen consumption during rest and a 2 min vocal period in dolphins that were trained to vary vocal loudness across trials. Vocal effort was quantified as the total acoustic energy of sounds produced. Metabolic rates during the vocal period were, on average, 1.2 and 1.5 times resting metabolic rate (RMR) in dolphin A and B, respectively. As vocal effort increased, we found that there was a significant increase in metabolic rate over RMR during the 2 min following sound production in both dolphins, and in total oxygen consumption (metabolic cost of sound production plus recovery costs) in the dolphin that showed a wider range of vocal effort across trials. Increases in vocal effort, as a consequence of increases in vocal amplitude, repetition rate and/or duration, are consistent with behavioral responses to noise in free-ranging animals. Here, we empirically demonstrate for the first time in a marine mammal, that these vocal modifications can have an energetic impact at the individual level and, importantly, these data provide a mechanistic foundation for evaluating biological consequences of vocal modification in noise-polluted habitats.
FOOTNOTES
Competing interests
The authors declare no competing or financial interests.
Author contributions
M.M.H. and D.P.N. conceived the study. M.M.H., D.P.N. and R.C.D. designed and executed the study. M.M.H., D.P.N., R.C.D. and T.M.W. interpreted the findings. M.M.H., D.P.N., R.C.D. and T.M.W. drafted and revised the article.
Funding
This work was funded by the US Office of Naval Research awards N0001410IP20067 and N0001411IP20017 to M.M.H. and D.P.N., N000141110341 and N000140811273 to T.M.W.
- © 2015. Published by The Company of Biologists Ltd