Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
SHORT COMMUNICATIONS
Foot speed, foot-strike and footwear: linking gait mechanics and running ground reaction forces
Kenneth P. Clark, Laurence J. Ryan, Peter G. Weyand
Journal of Experimental Biology 2014 217: 2037-2040; doi: 10.1242/jeb.099523
Kenneth P. Clark
Southern Methodist University, Locomotor Performance Laboratory, 5538 Dyer Street, Department of Applied Physiology and Wellness, Dallas, TX 75206, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laurence J. Ryan
Southern Methodist University, Locomotor Performance Laboratory, 5538 Dyer Street, Department of Applied Physiology and Wellness, Dallas, TX 75206, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter G. Weyand
Southern Methodist University, Locomotor Performance Laboratory, 5538 Dyer Street, Department of Applied Physiology and Wellness, Dallas, TX 75206, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: pweyand@smu.edu
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF
Loading

Abstract

Running performance, energy requirements and musculoskeletal stresses are directly related to the action–reaction forces between the limb and the ground. For human runners, the force–time patterns from individual footfalls can vary considerably across speed, foot-strike and footwear conditions. Here, we used four human footfalls with distinctly different vertical force–time waveform patterns to evaluate whether a basic mechanical model might explain all of them. Our model partitions the body's total mass (1.0Mb) into two invariant mass fractions (lower limb=0.08, remaining body mass=0.92) and allows the instantaneous collisional velocities of the former to vary. The best fits achieved (R2 range=0.95–0.98, mean=0.97±0.01) indicate that the model is capable of accounting for nearly all of the variability observed in the four waveform types tested: barefoot jog, rear-foot strike run, fore-foot strike run and fore-foot strike sprint. We conclude that different running ground reaction force–time patterns may have the same mechanical basis.

INTRODUCTION

The bodily motion of terrestrial animals that use bouncing gaits is determined by the action–reaction forces between the limbs and the ground. However, the predominant orientation of these forces during straight-path, level running and hopping is not in the horizontal direction of travel (Cavagna et al., 1977). Horizontal force requirements are minimized by an effective step-to-step maintenance of forward momentum once an animal is up to speed. Vertical force requirements, in contrast, can exceed body weight by a factor of two or more during periods of limb–ground contact (Weyand et al., 2000). Large vertical forces result from two factors: the need for stride-averaged vertical forces to equal the body's weight, and limb–ground contact periods that comprise only a fraction of the total stride time. Consequently, the vertically oriented ground reaction forces exceed horizontal forces by a factor of five or more, and lateral forces by greater margins.

The vertical force versus time waveforms of individual running and hopping footfalls can vary considerably in duration, amplitude and shape. This variation has been documented for a variety of species (Cavagna et al., 1977) and most comprehensively for humans (Bobbert et al., 1991; Munro et al., 1987). At present, several factors are known to introduce the shape variation that occurs predominantly in the initial portion of these force–time waveforms. These include: running speed (Bobbert et al., 1991; Kuitunen et al., 2002; Munro et al., 1987; Weyand et al., 2009; Weyand et al., 2010), the portion of the foot that initially contacts the running surface (Cavanagh, 1987; Chi and Schmitt, 2005; Dickinson et al., 1985; Ker et al., 1989; Lieberman et al., 2010; Nigg et al., 1987) and footwear (Liu and Nigg, 2000; Ly et al., 2010; Nigg et al., 1987; Nigg and Liu, 1999; Zadpoor and Nikooyan, 2010). Current understanding rests heavily on the two types of models most frequently used to interpret these waveforms: the spring-mass model and multi-mass models. Models of both types are well-founded and have undergone extensive evaluation. However, neither was formulated to explain these waveforms in full.

The most basic treatment of the vertical force–time waveforms is provided by the classic spring-mass model (Blickhan, 1989; McMahon and Cheng, 1990). The single-mass approach models running and hopping animals as a lumped point-mass mass bouncing on a massless leg spring. This single-mass model explains many aspects of running and hopping gaits with remarkable accuracy given its mechanical simplicity (Bullimore and Burn, 2007; Farley et al., 1993; Ferris and Farley, 1997; McMahon and Cheng, 1990). However, this classic model was formulated largely for broad evaluative purposes, not specific quantitative ones. Accordingly, the perfectly symmetrical force–time waveforms the model predicts (Bullimore and Burn, 2007; Robilliard and Wilson, 2005) cannot account for the non-symmetrical components that the force–time waveforms inevitably contain. These include, but are not limited to, heel-strike impacts at slow speeds and extremely rapid rising edges at faster ones (Kuitunen et al., 2002; Weyand et al., 2009; Weyand et al., 2010).

A second, more complex variety of multi-mass models developed from the two-mass ideas initially put forward by McMahon (McMahon et al., 1987) and Alexander (Alexander, 1988). These models have evolved in their complexity, largely by building upon Alexander's two-mass, stacked-spring model (Alexander, 1988; Alexander, 1990; Derrick et al., 2000; Ker et al., 1989). Contemporary versions include at least four masses and more than a dozen spring, mass and damping elements (Liu and Nigg, 2000; Ly et al., 2010; Nigg and Liu, 1999; Nikooyan and Zadpoor, 2011; Zadpoor and Nikooyan, 2010). In contrast to the single-mass models, a primary objective of the multi-mass models has been to provide detailed explanations of waveform variability, specifically the impact and rising-edge variability observed for human joggers (Nigg, 2010; Zadpoor and Nikooyan, 2010). However, the relatively specific objective of the multi-mass models has limited the breadth of their application. Evaluations typically ignore the descending edge of the waveforms and have been limited to jogging speeds. Accordingly, the ability of the now-elaborate, multi-mass models to explain either the falling edge of jogging waveforms or the entirety of the waveforms from intermediate and fast running speeds is not known.

Here, we seek to explain running ground reaction forces in full with an approach that is slightly more complex than the single-mass models, but considerably simpler than current multi-mass models. For this purpose, we formulated a two-mass model that theorizes that running vertical force–time waveforms consist of two components, each corresponding to the motion of a discrete portion of the body's mass. A smaller component (m1) corresponds to the impact of the lower limb with the running surface while a larger component (m2) corresponds to the accelerations of the remainder of the body's mass (Fig. 1A). We hypothesize that our two-mass model can explain running ground reaction force–time waveforms in their entirety across different speed, foot-strike and footwear conditions.

Fig. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 1.

Modeled versus actual vertical ground reaction force waveforms from four different running footfalls. (A,B) Barefoot, fore-foot strike at 3.5 m s−1; (C,D) shod, rear-foot strike at 5.0 m s−1; (E,F) shod, fore-foot strike at 5.0 m s−1; (G,H) shod, fore-foot strike at 10.5 m s−1. A, C, E and G illustrate the two-mass model (solid blue line) compared with the digitized waveforms (dashed black line). B, D, F and H illustrate the contributions of the first impulse (J1, dotted red line) and second impulse (J2, dashed green line) to the total predicted by the model (solid blue line). Modeled versus digitized waveform R2 values are provided in the figure; root mean square error values were 0.15, 0.16, 0.15 and 0.35Wb for waveforms 1–4, respectively. [Note: the model assumes that the force contributed by m1 after impulse J1 has ended is zero; original sources for waveforms 1–4 were: Lieberman et al. (Lieberman et al., 2010), their fig. 1c, step #1; Weyand et al. (Weyand et al., 2000), their fig. 1B, step #2; Weyand et al. (Weyand et al., 2010), their fig. 1A, step #1; Weyand et al. (Weyand et al., 2009), their fig. 1B, step #1 of the intact-limb runner.]

RESULTS AND DISCUSSION

In keeping with our hypothesis, our two-mass model was able to account for virtually all of the duration, amplitude and force–time pattern variability present in the vertical ground reaction force waveforms analyzed. Despite the large differences in waveform characteristics introduced by different speed, foot-strike and footwear conditions, our model accounted for an average of 97% of the individual force–time relationships (mean R2=0.97±0.01) and a minimum of 95% (Fig. 1). The accuracy of these fits across the heterogeneous waveforms tested suggests that two mechanical phenomena, acting in parallel, are sufficient to explain running ground reaction forces: (1) the collision of the lower limb with the running surface, and (2) the motion of the remainder of the body's mass throughout the stance phase.

The accuracy of the fits achieved using a model with only two mass components and with mass component values held constant across conditions differs from prevailing paradigms in several respects. First, while the sequential additions of third, fourth and fifth mass components to multi-mass models over the last two decades (Liu and Nigg, 2000; Ly et al., 2010; Nigg and Liu, 1999; Nikooyan and Zadpoor, 2011; Zadpoor and Nikooyan, 2010) may describe physical and mechanical reality as theorized (Nigg, 2010; Zadpoor and Nikooyan, 2010), these additional masses may also be unnecessary for waveform prediction. Second, the conclusion that the mass quantity decelerated upon foot–ground impact differs substantially for rear foot versus forefoot impacts (Lieberman et al., 2010; Nigg, 2010) should be reconsidered. The close fits we report here using a constant value of 8.0% of the body's mass across all foot-strike conditions indicates that a variable ‘effective mass’ may be unnecessary for accurate modeling and could be mechanically incorrect. For example, if we predict the sprint running waveform analyzed here (Fig. 1G,H) using the effective mass proportions suggested for a forefoot impact [m1=1.7% and m2=98.3% of total body mass Mb (Lieberman et al., 2010)] with a speed-specific foot collisional velocity (Mann and Herman, 1985) (Table 1), the rising edge of the sprint waveform is substantially under-predicted and the overall goodness of fit is considerably reduced (R2=0.95 to 0.82; see supplementary material Fig. S1). Third, the model's general features and simplifying assumptions permit impulse J1 and J2 durations and forces to be independent. In contrast, the dual ‘stacked spring-mass’ model-type (Alexander, 1990; Derrick et al., 2000; Ker et al., 1989) that Alexander originally introduced (Alexander, 1988) uses a serial, coupled configuration that may be incapable of predicting the brief simultaneous impulses responsible for the characteristic pattern of sprint running waveforms.

Indeed, the model's design was essential for achieving close fits to waveforms with variable rising edges, smooth falling edges and significantly different durations. Given the fixed-mass value of our lower-limb mass component, the close fits to the variable rising edges were achieved predominantly via the two model inputs (Table 1) responsible for the shape of collisional impulse J1 (Fig. 1). Values for the first of the two, the vertical velocity of the lower limb at touchdown, are well-supported by the waveform-specific literature values available. Values for the second, the deceleration time of the lower limb upon touchdown, are well-supported by the detailed analysis of Nigg et al. (Nigg et al., 1987) for waveform 2, but are lacking for the other three. Fits along the smoother falling edges depend directly upon impulse J2 because of the early conclusion of the J1 collisional event. Given a known physical basis for determining total impulse JT from contact and step times (Eqn 1; see Materials and methods), correctly quantifying impulse J2 depends solely on the quantity subtracted for impulse J1 (Eqn 2). While empirical validation clearly remains for several elements of our model, the fits achieved using anatomical mass inputs, realistic lower-limb velocities, and one mechanical explanation across conditions raise the possibility that the running force–motion relationship may be more general than previously recognized.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 1.

Waveform information

An additional factor in the accuracy of the fits we report was undoubtedly the model evaluation method adopted. The method chosen allowed us to assess a greater variety of waveforms than would have been possible via direct experimentation, but also involved two potential limitations. First, because the model fits were generated by varying the inputs, the goodness-of-fit values obtained should be regarded as the upper performance limits of the model. Second, the digitizing process enabling our approach might have transformed the literature waveforms into more model-conducive shapes. We were able to evaluate this second possibility empirically by applying the inputs used to fit two of the digitized waveforms (3 and 4) to the original waveform data. This process yielded fits that were the same or slightly greater for the original (respective R2 values of 0.98 and 0.96) versus digitized versions because the original waveforms were so closely reproduced by digitizing (see supplementary material Tables S1–S4).

We close by providing respective, illustrative examples of the basic and applied advances made possible by the concise physical basis of our two-mass model. One basic insight provided by the framework of the model is the identification of a mechanical strategy that runners can adopt to achieve faster speeds. By simply increasing the lower limb's velocity prior to touchdown, and reducing deceleration time during impact, runners can elevate the collisional impulse (J1) and total ground reaction forces as needed to attain faster speeds (Weyand et al., 2000; Weyand et al., 2009; Weyand et al., 2010). Both the existing literature data (Table 1) and our modeling results (Fig. 1) are consistent with this being a primary mechanism by which faster human runners do, in fact, attain faster sprint running speeds.

In application, the conciseness of the model could translate into practical techniques for determining ground reaction forces indirectly. At present, the lone indirect assessment method available (Bobbert et al., 1991) is scientifically rigorous, but impractical for broad usage. The existing technique involves the instantaneous summation of the accelerations of seven body segments based on high-frequency positional data from 10 bodily locations. In contrast, the scientific basis of our two-mass model (Eqns 1, 2, 3, 4, 5 and 6) reduces the data needed for indirect force determinations to three basic variables: aerial time, contact time and the vertical velocity of the lower limb. Thus, our model may allow video and other motion capture techniques to become practical tools for determining vertical ground reaction forces without direct measurement.

MATERIALS AND METHODS

Model formulation

Because the net vertical displacement of the body over time during steady-speed, level running is zero, the time-averaged vertical ground reaction force must equal the body's weight. Thus, the total stance-averaged vertical force FTavg can be determined if foot–ground contact time tc and aerial time ta are known: Embedded Image (1) where tstep is step time (tstep=tc+ta), m is body mass and g is gravitational acceleration (9.8 m s−2).

The ground reaction force waveform represents the instantaneous acceleration of the body's mass. Accordingly, the waveform can be conceptualized as the sum of the instantaneous accelerations of different segments that make up the body's total mass (Bobbert et al., 1991). In our model (Fig. 1), impulse J1 results from the acceleration of the lower limb during surface impact, and J2 corresponds to the acceleration of the remainder of the body's mass. The total impulse JT, is the sum of J1 and J2: Embedded Image (2)

Impulse mass m1 is the 8.0% of the body's total mass attributed to the lower limb, while impulse mass m2 is the remaining 92.0%. Impulse J1 is quantified from the deceleration of m1 during surface impact: Embedded Image (3) where Δt1 is the time interval between touchdown and vertical velocity of m1 slowing to zero, Δv1 is the change in vertical velocity of m1 during Δt1, and F1avg is the average force during the total time interval (2Δt1) of impulse J1. After the J1 time interval, the model assumes F1avg=0. J2 is determined from J1 and total impulse JT as: Embedded Image (4) where F2avg is the average force of J2 during the interval tc.

Modeled waveforms

The bell-shaped force curves F(t) for J1 and J2 are a result of non-linear elastic collisions (Cross, 1999) that can be accurately modeled using the raised cosine function: Embedded Image (5) where A is the peak amplitude, B is the center time of the peak and C is the half-width time interval. Because of the symmetrical properties of this function, peak amplitude A=2Favg, and the area under the curve is J=AC. The total force waveform FT(t) is the sum of each impulse waveform: Embedded Image (6) A1 is calculated from F1avg using the Δv1 and Δt1 terms in Eqn 3, and B1 and C1 equal the time Δt1 after touchdown for the vertical velocity of m1 to reach zero. A2 is calculated from F2avg in Eqn 4, and B2 and C2 equal one-half the contact time tc.

Modeled versus actual waveforms

We digitized (Engauge, version 4.1) four published waveforms that varied in duration, amplitude and shape (Table 1). Model fits of the four digitized waveforms (Fig. 1) were performed via a manual iterative process that constrained the inputs for Δt1 and Δv1 to values deemed realistic on the basis of existing literature. Inputs for tc and subsequent ta were determined from the waveforms using a threshold of 60 N. In two cases (waveforms 3 and 4), goodness of fit between modeled and original data waveforms were determined to supplement the evaluation of the digitized versions.

Model fits were quantified in two ways: (1) in force units standardized to the body's weight (Wb) using the root mean square statistic (RMSE), and (2) for goodness of fit using the R2 statistic. Digitized waveforms were interpolated as needed to provide force data on a per millisecond basis for these analyses. We hypothesized that the model would explain 90% or more (i.e. R2≥0.90) of the force–time variation present in each of the four waveforms analyzed. Data for all digitized, modeled and original waveforms used in the analysis are provided in supplementary material Tables S1–S4.

All variables are presented in SI units, but, per convention, force waveforms are illustrated in mass-specific units.

ACKNOWLEDGEMENTS

The authors thank Lindsay Wohlers, Geoffrey Brown and the two anonymous reviewers for helpful comments on the manuscript.

FOOTNOTES

  • Author contributions

    Each of the three authors, K.P.C., L.J.R. and P.G.W., contributed substantially to the conception of the study, the implementation and evaluation of the model presented, and the writing of the manuscript.

  • Competing interests

    The authors declare competing financial interests. Peter Weyand, Laurence Ryan and Kenneth Clark are the inventors of US Patent #8363891 which is owned by Southern Methodist University and contains scientific content related to that presented in the paper. The patent is licensed to SoleForce LLC in which the three aforementioned individuals are equity partners.

  • Funding

    This work was supported by a US Army Medical Research and Materiel Command award [W81XWH-12-2-0013] to P.G.W.

  • Supplementary material

    Supplementary material available online at http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.099523/-/DC1

  • © 2014. Published by The Company of Biologists Ltd

References

  1. ↵
    1. Alexander, R. M.
    (1988). Elastic Mechanisms in Animal Movement. Cambridge: Cambridge University Press.
  2. ↵
    1. Alexander, R. M.
    (1990). Three uses for springs in legged locomotion. Int. J. Rob. Res. 9, 53-61.
    OpenUrlCrossRef
  3. ↵
    1. Blickhan, R.
    (1989). The spring-mass model for running and hopping. J. Biomech. 22, 1217-1227.
    OpenUrlCrossRefPubMedWeb of Science
  4. ↵
    1. Bobbert, M. F.,
    2. Schamhardt, H. C. and
    3. Nigg, B. M.
    (1991). Calculation of vertical ground reaction force estimates during running from positional data. J. Biomech. 24, 1095-1105.
    OpenUrlCrossRefPubMedWeb of Science
  5. ↵
    1. Bullimore, S. R. and
    2. Burn, J. F.
    (2007). Ability of the planar spring-mass model to predict mechanical parameters in running humans. J. Theor. Biol. 248, 686-695.
    OpenUrlCrossRefPubMedWeb of Science
  6. ↵
    1. Cavagna, G. A.,
    2. Heglund, N. C. and
    3. Taylor, C. R.
    (1977). Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am. J. Physiol. 233, R243-R261.
    OpenUrlWeb of Science
  7. ↵
    1. Cavanagh, P. R.
    (1987). The biomechanics of lower extremity action in distance running. Foot Ankle 7, 197-217.
    OpenUrlCrossRefPubMedWeb of Science
  8. ↵
    1. Chi, K. J. and
    2. Schmitt, D.
    (2005). Mechanical energy and effective foot mass during impact loading of walking and running. J. Biomech. 38, 1387-1395.
    OpenUrlCrossRefPubMedWeb of Science
  9. ↵
    1. Cross, R.
    (1999). Dynamic properties of tennis balls. Sports Engineering 2, 23-33.
    OpenUrlCrossRef
  10. ↵
    1. Derrick, T. R.,
    2. Caldwell, G. F. and
    3. Hamill, J.
    (2000). Modeling the stiffness characteristics of the human body while running with various stride lengths. J. Appl. Biomech. 16, 36-51.
    OpenUrl
  11. ↵
    1. Dickinson, J. A.,
    2. Cook, S. D. and
    3. Leinhardt, T. M.
    (1985). The measurement of shock waves following heel strike while running. J. Biomech. 18, 415-422.
    OpenUrlCrossRefPubMedWeb of Science
  12. ↵
    1. Farley, C. T.,
    2. Glasheen, J. and
    3. McMahon, T. A.
    (1993). Running springs: speed and animal size. J. Exp. Biol. 185, 71-86.
    OpenUrlAbstract
  13. ↵
    1. Ferris, D. P. and
    2. Farley, C. T.
    (1997). Interaction of leg stiffness and surfaces stiffness during human hopping. J. Appl. Physiol. 82, 15-22, discussion 13-14.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Ker, R. F.,
    2. Bennett, M. B.,
    3. Alexander, R. M. and
    4. Kester, R. C.
    (1989). Foot strike and the properties of the human heel pad. Proc. Inst. Mech. Eng. H 203, 191-196.
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Kuitunen, S.,
    2. Komi, P. V. and
    3. Kyröläinen, H.
    (2002). Knee and ankle joint stiffness in sprint running. Med. Sci. Sports Exerc. 34, 166-173.
    OpenUrlCrossRefPubMedWeb of Science
  16. ↵
    1. Lieberman, D. E.,
    2. Venkadesan, M.,
    3. Werbel, W. A.,
    4. Daoud, A. I.,
    5. D'Andrea, S.,
    6. Davis, I. S.,
    7. Mang'eni, R. O. and
    8. Pitsiladis, Y.
    (2010). Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 463, 531-535.
    OpenUrlCrossRefPubMedWeb of Science
  17. ↵
    1. Liu, W. and
    2. Nigg, B. M.
    (2000). A mechanical model to determine the influence of masses and mass distribution on the impact force during running. J. Biomech. 33, 219-224.
    OpenUrlCrossRefPubMedWeb of Science
  18. ↵
    1. Ly, Q. H.,
    2. Alaoui, A.,
    3. Erlicher, S. and
    4. Baly, L.
    (2010). Towards a footwear design tool: influence of shoe midsole properties and ground stiffness on the impact force during running. J. Biomech. 43, 310-317.
    OpenUrlCrossRefPubMedWeb of Science
  19. ↵
    1. Mann, R. and
    2. Herman, J.
    (1985). Kinematic analysis of Olympic sprint performance: men's 200 meters. Int. J. Sport Biomech. 1, 151-162.
    OpenUrl
  20. ↵
    1. McMahon, T. A. and
    2. Cheng, G. C.
    (1990). The mechanics of running: how does stiffness couple with speed? J. Biomech. 23 Suppl. 1, 65-78.
    OpenUrlCrossRefPubMedWeb of Science
  21. ↵
    1. McMahon, T. A.,
    2. Valiant, G. and
    3. Frederick, E. C.
    (1987). Groucho running. J. Appl. Physiol. 62, 2326-2337.
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Munro, C. F.,
    2. Miller, D. I. and
    3. Fuglevand, A. J.
    (1987). Ground reaction forces in running: a reexamination. J. Biomech. 20, 147-155.
    OpenUrlCrossRefPubMedWeb of Science
  23. ↵
    1. Nigg, B. M.
    (2010). Biomechanics of Sport Shoes. Calgary, AB: Topline Printing Inc.
  24. ↵
    1. Nigg, B. M. and
    2. Liu, W.
    (1999). The effect of muscle stiffness and damping on simulated impact force peaks during running. J. Biomech. 32, 849-856.
    OpenUrlCrossRefPubMedWeb of Science
  25. ↵
    1. Nigg, B. M.,
    2. Bahlsen, H. A.,
    3. Luethi, S. M. and
    4. Stokes, S.
    (1987). The influence of running velocity and midsole hardness on external impact forces in heel-toe running. J. Biomech. 20, 951-959.
    OpenUrlCrossRefPubMedWeb of Science
  26. ↵
    1. Nikooyan, A. A. and
    2. Zadpoor, A. A.
    (2011). Mass-spring damper modeling of the human body to study running and hopping – an overview. Proc. Inst. Mech. Eng. H 225, 1121-1135.
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Robilliard, J. J. and
    2. Wilson, A. M.
    (2005). Prediction of kinetics and kinematics of running animals using an analytical approximation to the planar spring-mass system. J. Exp. Biol. 208, 4377-4389.
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Weyand, P. G.,
    2. Sternlight, D. B.,
    3. Bellizzi, M. J. and
    4. Wright, S.
    (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 89, 1991-1999.
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Weyand, P. G.,
    2. Bundle, M. W.,
    3. McGowan, C. P.,
    4. Grabowski, A.,
    5. Brown, M. B.,
    6. Kram, R. and
    7. Herr, H.
    (2009). The fastest runner on artificial legs: different limbs, similar function? J. Appl. Physiol. 107, 903-911.
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Weyand, P. G.,
    2. Sandell, R. F.,
    3. Prime, D. N. and
    4. Bundle, M. W.
    (2010). The biological limits to running speed are imposed from the ground up. J. Appl. Physiol. 108, 950-961.
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Zadpoor, A. A. and
    2. Nikooyan, A. A.
    (2010). Modeling muscle activity to study the effects of footwear on the impact forces and vibrations of the human body during running. J. Biomech. 43, 186-193.
    OpenUrlCrossRefPubMedWeb of Science
View Abstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

Keywords

  • Force-motion
  • Biomechanics
  • Running performance
  • Barefoot running

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Foot speed, foot-strike and footwear: linking gait mechanics and running ground reaction forces
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
SHORT COMMUNICATIONS
Foot speed, foot-strike and footwear: linking gait mechanics and running ground reaction forces
Kenneth P. Clark, Laurence J. Ryan, Peter G. Weyand
Journal of Experimental Biology 2014 217: 2037-2040; doi: 10.1242/jeb.099523
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
SHORT COMMUNICATIONS
Foot speed, foot-strike and footwear: linking gait mechanics and running ground reaction forces
Kenneth P. Clark, Laurence J. Ryan, Peter G. Weyand
Journal of Experimental Biology 2014 217: 2037-2040; doi: 10.1242/jeb.099523

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS AND DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGEMENTS
    • FOOTNOTES
    • References
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF

Related articles

Cited by...

More in this TOC section

  • Anaemia only causes a small reduction in the upper critical temperature of sea bass: is oxygen delivery the limiting factor for tolerance of acute warming in fishes?
  • Buzzing during biosonar-based interception of prey in the delphinids Tursiops truncatus and Pseudorca crassidens
  • Oxygen transport is not compromised at high temperature in pythons
Show more SHORT COMMUNICATIONS

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Meet the Editors at SICB Virtual 2021

Reserve your place to join some of the journal editors, including Editor-in-Chief Craig Franklin, at our Meet the Editor session on 17 February at 2pm (EST). Don’t forget to view our SICB Subject Collection, featuring relevant JEB papers relating to some of the symposia sessions.


2020 at The Company of Biologists

Despite 2020's challenges, we were able to bring a number of long-term projects and new ventures to fruition. As we enter a new year, join us as we reflect on the triumphs of the last 12 months.


Critical temperature window sends migratory black-headed buntings on their travels

The spring rise in temperature at black-headed bunting overwintering sites is essential for triggering the physical changes that they undergo before embarking on their spring migration – read more.


Developmental and reproductive physiology of small mammals at high altitude

Cayleih Robertson and Kathryn Wilsterman focus on high-altitude populations of the North American deer mouse in their review of the challenges and evolutionary innovations of pregnant and nursing small mammals at high altitude.


Read & Publish participation extends worldwide

“Being able to publish Open Access articles free of charge means that my article gets maximum exposure and has maximum impact, and that all my peers can read it regardless of the agreements that their universities have with publishers.”

Professor Roi Holzman (Tel Aviv University) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992