Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
Research Article
How cockatiels (Nymphicus hollandicus) modulate pectoralis power output across flight speeds
Tyson L. Hedrick, Bret W. Tobalske, Andrew A. Biewener
Journal of Experimental Biology 2003 206: 1363-1378; doi: 10.1242/jeb.00272
Tyson L. Hedrick
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bret W. Tobalske
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew A. Biewener
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading

SUMMARY

The avian pectoralis muscle must produce a varying mechanical power output to achieve flight across a range of speeds (1-13 m s-1). We used the natural variation in the power requirements with flight speed to investigate the mechanisms employed by cockatiels (Nymphicus hollandicus) to modulate muscle power output. We found that pectoralis contractile function in cockatiels was generally conserved across speed and over a wide range of aerodynamic power requirements. Despite the 2-fold range of variation in muscle power output, many aspects of muscle performance varied little: duration of muscle shortening was invariant, and overall wingbeat frequency and muscle strain varied to a lesser degree (1.2-fold and 1.4-fold, respectively) than muscle power or work. Power output was primarily modulated by muscle force (accounting for 65% of the variation) rather than by muscle strain, cycle frequency or changes in the timing of force production relative to muscle strain. Strain rate and electromyogram (EMG) results suggest that the additional force was provided via increasing pectoralis recruitment. Due to their effect on the transformation of muscle work into useful aerodynamic work, changes in wing position and orientation during the downstroke probably also affect the magnitude of muscle force developed for a given level of motor recruitment. Analysis of the variation in muscle force and airflow over the wing suggests that the coefficients of lift and drag of the wing vary 4-fold over the speed range examined in this study.

  • cockatiel
  • Nymphicus hollandicus
  • flight
  • muscle
  • power
  • © The Company of Biologists Limited 2003
View Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
How cockatiels (Nymphicus hollandicus) modulate pectoralis power output across flight speeds
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Research Article
How cockatiels (Nymphicus hollandicus) modulate pectoralis power output across flight speeds
Tyson L. Hedrick, Bret W. Tobalske, Andrew A. Biewener
Journal of Experimental Biology 2003 206: 1363-1378; doi: 10.1242/jeb.00272
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Research Article
How cockatiels (Nymphicus hollandicus) modulate pectoralis power output across flight speeds
Tyson L. Hedrick, Bret W. Tobalske, Andrew A. Biewener
Journal of Experimental Biology 2003 206: 1363-1378; doi: 10.1242/jeb.00272

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • SUMMARY
    • Introduction
    • Materials and methods
    • Results
    • Discussion
    • ACKNOWLEDGEMENTS
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Early developmental stages of native populations of Ciona intestinalis under increased temperature are affected by local habitat history
  • Three auditory brainstem response (ABR) methods tested and compared in two anuran species
  • Differing thermal sensitivities of physiological processes alter ATP allocation
Show more RESEARCH ARTICLE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Meet the Editors at SICB Virtual 2021

Reserve your place to join some of the journal editors, including Editor-in-Chief Craig Franklin, at our Meet the Editor session on 17 February at 2pm (EST). Don’t forget to view our SICB Subject Collection, featuring relevant JEB papers relating to some of the symposia sessions.


2020 at The Company of Biologists

Despite 2020's challenges, we were able to bring a number of long-term projects and new ventures to fruition. As we enter a new year, join us as we reflect on the triumphs of the last 12 months.


The Big Biology podcast

JEB author Christine Cooper talks to Big Biology about her research. In this fascinating JEB sponsored podcast she tells us how tough zebra finches adjust their physiology to cope with extreme climate events. 


Developmental and reproductive physiology of small mammals at high altitude

Cayleih Robertson and Kathryn Wilsterman focus on high-altitude populations of the North American deer mouse in their review of the challenges and evolutionary innovations of pregnant and nursing small mammals at high altitude.


Read & Publish participation extends worldwide

“Being able to publish Open Access articles free of charge means that my article gets maximum exposure and has maximum impact, and that all my peers can read it regardless of the agreements that their universities have with publishers.”

Professor Roi Holzman (Tel Aviv University) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992