Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
Research Article
Intrapopulational variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket
R. F. Nespolo, M. A. Lardies, F. Bozinovic
Journal of Experimental Biology 2003 206: 4309-4315; doi: 10.1242/jeb.00687
R. F. Nespolo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. A. Lardies
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Bozinovic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading

SUMMARY

Studies focusing on physiological variation among individuals, and its possible evolutionary consequences, are scarce. A trait can only be a target of natural selection if it is consistent over time, that is, a trait must be repeatable. In ectotherms it has been suggested that standard metabolic rate (MR) is related to Darwinian fitness, since it reflects energy usage and expenditure. The metabolic rate of the cricket Hophlosphyrum griseus was determined at three ambient temperatures. Repeatability of MR was estimated by product–moment correlation on residuals of body mass, as well as the thermal sensitivity of MR on an individual basis (individual Q10). The MR of H. griseus was significantly repeatable (r=0.53) and highly dependent on ambient temperature, and its sensitivity (Q10) was dependent on the temperature range. Our estimation of MR repeatability was high in comparison to published studies in vertebrates. Ours is the second report of repeatability (i.e. consistency over time of an individual's performance ranking within a population) of any aspect of energy metabolism in an insect, and also the first study to report significant repeatability of MR.

Individual Q10 values revealed important interindividual variation, which reflects the existence of intrapopulational variability in the thermal sensitivity of MR. In addition, individual Q10 values were negatively correlated between temperature ranges. This means that crickets having low Q10 at low temperatures, presented high Q10 at high temperatures, and vice versa. Our results suggest that MR could be of selective value in insects, showing consistency over time and intrapopulational variability in its thermal dependence. Nevertheless, its heritability remains to be determined.

  • standard metabolic rate
  • cricket
  • Hophlosphyrum griseus
  • Q10
  • oxygen consumption
  • repeatability
  • ectotherm
  • evolution

Introduction

Temperature has profound effects on ectothermic animals (Cossins and Bowler, 1987). It controls nearly all physiological and biochemical processes, thus determining a great deal of animal life histories (Huey and Berrigan, 2001). On the long-term (i.e. evolutionary) scale, temperature has important consequences for ectotherms, determining patterns of daily activity (Alexander, 1999), movement (Gibert et al., 2001), adult size (Sibly and Atkinson, 1994), reproduction (Madsen and Shine, 1999), and feeding and digestion (Blouin-Demers and Weatherhead, 2001). An organism's pattern of energy usage is reflected in measurements of energy expenditure, the most common being the rate of metabolism. In animals, metabolic rate (MR) can be determined by either the rate of CO2 production, or the rate of O2 consumption.

The most immediate determinants of MR in insects are body mass and ambient temperature (Ta). Secondarily, MR changes with mode of locomotion (Rogowitz and Chappell, 2000), gender (Rogowitz and Chappell, 2000), altitude (Rourke, 2000), parasitic infestation (Kolluru et al., 2002), water scarcity (Davis et al., 1999), climate (Nielsen et al., 1999), and reproduction (Prestwich and Walker, 1981). Several adaptive hypotheses have been proposed to explain general patterns and magnitudes of MR in insects. Two of the most popular, but at the same time highly debated, are discontinuous gas exchange and metabolic cold adaptation. The former makes use of a known respiratory pattern in insects (i.e. a burst of CO2 release between periods of low CO2 production) to explain water economy or adaptations to hypoxia (Lighton, 1996). The second hypothesis states that insects inhabiting geographic areas with low mean Ta will present elevated MR (after controlling for body mass, temperature and phylogeny), as a thermoregulatory adaptation to confront heat loss (Reinhold, 1999; Addo-Bediako et al., 2002). These studies make it clear that the ecological and physiological patterns and processes that account for observed variation in MR in insects are not yet fully understood, especially in regard to its adaptive significance.

Comparative physiological ecology is a discipline that largely focuses on inferring adaptations (McNab, 2002). Physiological ecologists analyse morphological, physiological and behavioural traits patterns, in order to explain how such traits originated, and whether or not their presence increases survival and reproduction. However, probably for historical reasons, only the first two tasks have been successful (Bennett, 1987). New physiological adaptations are currently occurring in populations, but interest in studying evolutionary processes at this level has only just begun (Kingsolver et al., 2000; Hoeckstra et al., 2001). Such processes need to be addressed in the context of natural selection and intraspecific variability. A trait can be the target of natural selection only if it is consistent over time, that is, the trait must be repeatable (Hayes and Jenkins, 1997). In fact, quantitative geneticists have demonstrated that repeatability is related to heritability, in the sense that the former sets the upper limit of the latter (Falconer and Mackay, 1997; Dohm, 2002). Hence, the demonstration of significant repeatability in a trait necessarily precedes any attempt to demonstrate its selective significance. Metabolic rate has been shown to be repeatable in vertebrates, both in endotherms (Hayes et al., 1998; Bech et al., 1999) and ectotherms (Garland and Else, 1987; Garland and Bennett, 1990), and recently, Rogowitz and Chappell (2000) have reported significant repeatability in activity metabolism of a beetle. However, although MR appear to be closely related to fitness in crickets (Crnokrak and Roff, 2002), as far as we know there is no published study that reports repeatability of MR in an insect, which is the first aim of this paper.

Our second aim concerns the thermal sensitivity of MR, termed Q10 (i.e. the magnitude of change in MR for a 10°C change in Ta) (Schmidt-Nielsen, 1995). There is a great deal of information on the Q10 of MR in insects, values ranging from 1.5 to 3, with a mode of 2.5 (Prestwich and Walker, 1981; Ashby, 1997; Davis et al., 1999; Rourke, 2000; Rogowitz and Chappell, 2000). However, Q10, like MR, can be considered to be an individual attribute. Since it reflects the capacity of change in MR relative to changes in temperature, it could also be considered a measure of organismal performance. Hence, it is interesting to explore how much variability exists in Q10 within a population, and how this variability is related to the same variables that determine MR: temperature and body mass. As far as we know, this approach has been never attempted. We chose for our study model a small cricket species from central Chile, Hophlosphyrum griseus, since these insects are naturally exposed to a wide range of environmental temperatures, are available in large numbers and are easy to handle and measure.

Materials and methods

Animals and study site

Crickets Hophlosphyrum griseus Phillipi 1863 were collected during austral spring 2002. The species is widely distributed in central Chile, from La Serena (29°54′S, 71°16′W) to Valdivia (39°27′S, 73°49′W) (Lamborot, 1985). Studied individuals were obtained at San Carlos de Apoquindo (33°23′S, 70°31′W), near the Andean Range, at 800 m altitude. The climate in the study area is Mediterranean, with an annual mean of 376.4 mm rainfall, concentrated (65%) during the austral winter months, from June to August (Jaksic, 2001). Mean annual temperatures are 6.0 and 28.7°C. San Carlos de Apoquindo is covered by sclerophyllous vegetation which, physiognomically, may be described as an evergreen scrub (for a complete description of the study site see Jaksic, 2001). The crickets were collected by hand net, from underneath stones, pieces of wood and soil litter. Specimens were transferred to plastic containers and moved to the laboratory on the same day as capture.

Maintenance and acclimation

All specimens were kept in individual containers (i.e. perforated plastic Petri dishes) to ensure uniformity of acclimation conditions prior to measurements. Water was periodically added to a cotton swab placed at the end of the cage to provide a source of moisture. Food was supplied weekly, in the form of rabbit food pellets. The photoperiod was kept at 12 h:12 h dark:light. After an initial 1 week period of acclimation to laboratory conditions, and prior to each metabolic measurement, crickets were maintained for 2 weeks at either 7±1°C, 17±1°C or 27±1°C in environmental chambers. These temperatures were offered in a random order to avoid sequential training. We chose these acclimation temperatures since they are close to the average extremes of the natural temperature range in the habitat where the sample organisms were captured (see Di Castri and Hajek, 1976; Jaksic, 2001). Following each thermal acclimation, metabolic rate was measured at the same temperature as acclimation.

We collected additional individuals to increase sample size for the repeatability analysis. All of these specimens were maintained at 17°C since at this temperature mortality was minimal. Both metabolic measurements were performed 1 month apart (see below).

Metabolic rate measurements

All metabolic trials were performed during the day, which corresponds to the rest phase in this species. Rates of oxygen consumption (V.O) were used as a measure of MR. V.O was determined using `closed system' metabolic chambers (Vleck, 1987), consisting of disposable 10 ml hermetic syringes fitted with three-way valves (see also Chappell, 1983; Ashby, 1997; Chown, 1997). All measurements were made during the day, when crickets are inactive, and thus they serve as measures of 'standard rates of metabolism' (MR) (Schmidt-Nielsen, 1995; McNab, 2002). Animals were weighed (body mass = Mb) to the nearest mg in an analytical balance and then placed, individually, inside the syringes. Small granules of CO2-absorbent Baralyme™ and Drierite™ were added to each syringe in a compartment isolated from the cricket. The syringes were sealed from the atmosphere and placed in a temperature controlled, dark incubator for the duration of the measurement period (ca. 3–6 h, depending on the Ta at which measurements were made). In no case did the O2 within the syringe decrease by more than 10% (usually less than 5%) between the start and the end of each measurement period. Three blank syringes served as controls for each series of measurements. We injected the air of the syringe into a Tygon™ tube (1.5 m long) connected to the O2 analyzer after passing through CO2-absorbent granules of Baralyme™ and Drierite™. At the end of the measurement interval, O2 concentrations were determined using a Fox Field Oxygen Analysis System (Sable System International, Henderson, NV, USA) supplied with barometric pressure compensation. Output from the O2 analyzer was recorded by a computer using the DATACAN program. Rates of oxygen consumption (in μl O2 h–1) were calculated for each syringe, using the following equation modified from Vleck (1987): Math1 where V is the initial volume of dry, CO2-free air in the syringe at STP; F1O and FEO are the O2 fractions within the syringe at the start and end of incubation, respectively; and t is the duration of incubation in h.

This system was not intended to measure the instantaneous rate of metabolism, nor to resolve discontinuous gas exchange (e.g. Chappell and Rogowitz, 2000), since each measurement is an average of oxygen consumption over several hours. However, technical errors associated with this measurement method are small (see Anderson et al., 1989), and its simplicity allows simultaneous measurements of a large number of individuals, which are needed for statistical analyses of repeatability.

Statistics

Our design included three predictor variables: two categorical variables (sex and Ta), and one continuous variable (Mb). Dependent variables were MR and Q10. We performed an analysis of covariance (ANCOVA), with Mb as the a covariate, to test the effects of each categorical variable on V̇O2. We checked analysis of variance (ANOVA) assumptions using Kolmogorov–Smirnov and Cochran tests for normality, and Hartley and Bartlett tests for homogeneity of variances. The parallelism assumption (i.e. interaction with the covariate) was checked using an ANCOVA homogeneity-of-slopes model (Statistica 6.0), and was found to be significant in all cases. Consequently, we performed a separate slopes model ANCOVA (Statistica 6.0), which accounts for the absence of parallelism. Common linear regressions of Mb and MR were performed between each temperature. Although, formally repeatability is the intraclass correlation coefficient between two measurements (Lessels and Boag, 1987), several authors have adopted the Pearson product–moment correlation (Huey and Dunham, 1987; Chappell et al., 1995) since it is statistically easier to manage, and theoretically it represents the same quantity (Lynch and Walsh, 1998). We then used the Pearson product–moment correlation (residuals from Mb) performed on the same individuals, 1 month apart. Values of Q10 were computed for each individual as MR(T2)/MR(T1), where T2 and T1 were either 17°C and 7°C, or 27°C and 17°C, respectively. Since MR strongly covaries with Mb, a prerequisite to treating individual Q10 as independent data points (and using them in statistical analyses) is that the ratio of Mb(T2):Mb(T1) must be approximately equal to unity (i.e. Mb does not change between Ta values). We tested this assumption prior to any statistical treatment of individual Q10 values [Mb(17°C)/Mb(7°C)=0.97±0.10 and Mb(27°C)/Mb(17°C)= 1.08±0.16 (mean ± S.E.M.)].

We obtained two samples of individual Q10 values at different temperatures (low: 7–17°C and high: 17–27°C, Ta). These values were compared by ANCOVA, using mean Mb, [Mb(T2)+Mb(T1)]/2 as the covariate. To explore the effect of Ta on individual Q10 values, we correlated residuals of Q10 with Mb, between Tas (i.e. Q10 residuals from low Ta versus Q10 residuals from high Ta), in those crickets where V.O could be measured at the three Tas (N=38 individuals).

Results

Metabolic rate was significantly correlated with body mass for all Ta (Fig. 1, Table 1). There were significant differences in the slopes of the V.O /Mb relationship, at different Ta values, which is demonstrated by the significant interaction between temperature and Mb in the parallelism test (F2,286=23.5, P<0.0001, ANCOVA, homogeneity-of-slopes model). The slope of V.O and Mb increased with Ta (Fig. 1). Additionally, Ta had a significant effect on V.O after controlling for Mb (F2,286=62.1, P<0.0001, ANCOVA, separate slopes model). Although sex was not significant as a main factor, it had an effect on V.O through interaction with Ta and the covariable (F1,290=16.5, P=0.0006, one-way ANCOVA, Table 2, Fig. 2). This effect is probably due to the sexual dimorphism presented by this species, and the fact that females became significantly larger than males at high Ta (27°C; see Fig. 2).

Fig. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 1.

Oxygen consumption and body mass in crickets acclimated to and measured at 7°C, 17°C and 27°C. For means and regression statistics, see Table 1.

View this table:
  • View inline
  • View popup
Table 1.

Means (±S.E.M.) and regression statistics between V̇O2 and Mb

View this table:
  • View inline
  • View popup
Table 2.

ANCOVA, separate slopes model testing the effects of sex and Ta on log(1 + V̇O2) with Mb as the covariate

Fig. 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 2.

Interaction plot (see Table 2) from an ANCOVA, with body mass Mb as the covariate, showing the relationship between sex and ambient temperature Ta on V̇O2. Data were transformed to log+1 to meet ANOVA assumptions. Values are adjusted means± s.e.m. (N=75, 147 and 70 for 7°C, 17°C and 27°C, respectively).

Residuals of V.O were significantly repeatable between measurements made 1 month apart (r=0.53; P<0.0001, Fig. 3), which reflects trait consistency over time. Individual Q10 values were significantly correlated with Mb only in the low Ta range, but this correlation was weak (r2=0.08, P<0.0001; high Ta: r2=0.03, NS, Fig. 4). Individual Q10 presented substantial variability, with coefficients of variation of 22% and 30% in the low and high temperature range, respectively. However, Q10 values from the different temperature ranges were not significantly different (Q10,7–17°C=2.43±0.53; Q10,17–27°C= 2.63±0.80, t37=–1.07, NS), although residuals of Q10 were significantly and negatively correlated between Ta values (r=–0.59, P=0.0001; Fig. 5).

Fig. 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 3.

Repeatability of the rate of oxygen consumption of 85 crickets measured twice (at Ta=17°C) before and after a 1 month interval. Data are residuals of body mass. ***P<0.001.

Fig. 4.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 4.

Q10 computed for each individual, measured at two temperatures (open circles, 7–17°C; filled circles, 17–27°C), versus body mass. Only the regression between Q10 and body mass in the 7–17°C range was significant (see text for statistics).

Fig. 5.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 5.

Correlation (residuals from body mass) of individual Q10 values measured at two temperature ranges (7–17°C and 17–27°C). ***P<0.001.

Discussion

The standard metabolic rate of Hophlosphyrum griseus was repeatable and highly dependent on Ta, and the thermal sensitivity of MR (i.e. Q10) was dependent on the temperature range. According to Rogowitz and Chappell (2000), this would be the second report of repeatability (i.e. consistency over time of an individual's performance ranking within a population) of any aspect of energy metabolism in an insect, and the first report of significant repeatability of MR. Another interesting outcome of this study was that individual Q10 values revealed important intrapopulational variation, which reflects the existence of interindividual variability in the thermal sensitivity of V̇O2. More interestingly, individual Q10 values were negatively correlated between temperature ranges. This mean that crickets with low Q10 at low temperatures, present a high Q10 at high temperatures, and vice versa.

Metabolic rate

Our values of metabolic rate are very similar to those reported for other species of similarly sized crickets (Prestwich and Walker, 1981), or values that have been allometrically standardized by body size (Reinhold, 1999; see also Ashby, 1997). Assuming a respiratory quotient of 0.84 (Addo-Bediako et al., 2002), and taking into account each test temperature, our MR values are above those reported by other authors using open flow-V.CO respirometry for crickets (4–6 μl O2 h–1, Ta=30°C; Kolluru et al., 2002), harvestmen (2.6 μl O2 h–1,Ta=25°C; Lighton, 2002), and some beetle species (5.9 μl O2 h–1, Ta=28°C; Davis et al., 1999), and are similar to some grasshopper species (7.14–11.9 μl O2 h–1, Ta=25°C; Rourke, 2000). Metabolic rate increased with Ta, as expected in an ectotherm species. However, the rate of increase was different at different temperatures. Such a pattern has been described in crickets (Prestwich and Walker, 1981), grasshoppers (Rourke, 2000), beetles (Rogowitz and Chappell, 2000), ants (Nielsen et al., 1999), and several other species of terrestrial and aquatic invertebrates (Rao and Bullock, 1954). In addition to Mb and Ta, some authors have reported significant effects of sex on MR (Rogowitz and Chappell, 2000). This is not the case here since the main effects of sex on V.O were not significant when controlling for Mb.

Repeatability of metabolic rate

Our results suggest that standard MR in Hophlosphyrum griseus is significantly repeatable after controlling for Mb. A potential drawback of our estimation is that we did not control for activity, which influences MR, although individuals were measured during the rest phase. If the same individuals in the sample were more active during both periods of MR measurement, the repeatability result could be high since individuals conserve their activity ranking across measurements. However, this does not apply to the relationship between body mass and MR, where these were high and significant. This means that larger individuals consistently presented higher MR values than smaller individuals, which is clearly a biological effect and not an artefact. Activity would be `noise' in the sense of residual error, which reduces the power of the analysis. In our case, this would yield a small and probably nonsignificant correlation, which was not the case. Another factor that could affect the repeatability analysis is that individuals were growing during the experimental period. This is very hard to avoid since H. griseus is a yearly species (i.e. individuals reproduce seasonally and live no more than a year; Lamborot, 1985). On the other hand, a shorter measurement period would have been less informative since repeatability is the consistency of a trait over relatively long periods of time. Thus, to minimize the effect of growth, we controlled by body mass by using residuals and excluded individuals that molted during this period (approximately three crickets).

Previous attempts to determine the repeatability of V̇O2 or V̇CO2 in insects suffer from serious biases. For example, Ashby (1997) reported a V.O product–moment correlation of 0.85 for a grasshopper, but N=6 and, furthermore, no significance value was provided, nor body size controlled for. This result is, therefore trivial, since apparent repeatability of MR without correction for Mb, or computed over mass-specific MR, would be very high, given that Mb is known to be a highly repeatable trait (Chappell et al., 1995). Actually, if we reanalyze our data using V.O values obtained per individual (i.e. ml O2 h–1), our repeatability would be 0.72 (P<0.01), compared with repeatability for mass-specific V.O (i.e. ml O2 g–1 h–1), where r=0.55 (P<0.01). These inflated values are only due to effects of Mb. On the other hand, Rourke (2000) concluded that repeatability of water loss rate is high because three measurements made 2 weeks apart in 15 individuals did not show significant differences. The problem with this reasoning is that statistical tests are designed to avoid type I error, but not type II. In other words, the absence of significant differences among means is not evidence for their similarity (Parkhurst, 2001). Thus, Rourke (2000) can only conclude that there is not enough evidence to decide whether the water loss rate is different between samples. The only study we found where accurate estimations of repeatability in an insect were provided was for the metabolic rate of forced terrestrial exercise in a beetle (Rogowitz and Chappell, 2000). These authors reported significant values of repeatability, some as high as 0.75 between trials, but with all measurements made over a time period of 5 days. This value was higher than our findings and, together, both studies report considerably higher repeatability values than any previously reported values for physiological traits in vertebrates (Chappell et al., 1995; Berteaux et al., 1996; Bech et al., 1999). The fact that standard MR in insects is repeatable is interesting, since it suggests that this trait could respond to natural selection (Falconer and Mackay, 1997). To address this key question, which is a second step directed towards addressing adaptive hypotheses of physiological traits in insects, researchers should attempt to answer the more specific question: is standard metabolic rate heritable? Studies in vertebrates yielded mixed results (Calvo et al., 2002; Nespolo et al., 2003) but the fact that metabolic rate appear as important determinant of fitness in some species of cricket (Crnokrak and Roff, 2002) along with the results of this paper suggest that insect metabolism could be of selective importance.

Thermal sensitivity of metabolic rate

We assessed the metabolic response to Ta using Q10 values computed for each individual at two temperature ranges. There are plenty of studies reporting the Q10 of metabolic rate for insects, and for invertebrates in general. It appears that in most insects MR presents a Q10 ranging from 2.0 to 2.5, with extreme values of 1.0 and 4.6 (Forlow and MacMahon, 1988; Hadley and Massion, 1985; Cooper, 1993; Chown et al., 1997), which are in agreement with our results.

From thermodynamic considerations for general biochemical reactions, Q10 is predicted to be higher at lower temperatures (Schmidt-Nielsen, 1995). However, in insects this pattern is rather variable. For example, the results of Harrison and Fewell (1995) were in agreement with this theoretical prediction for a grasshopper, since Q10 values of digestive processes were always negatively correlated with temperature. These authors found that Q10 was quite variable, depending on the specific process being tested, with extreme values such as 5.3 for excretion rate. However, for MR, these authors found that Q10 did not change with temperature, and, in fact, reported remarkably high magnitudes (Q10=3.6–3.7). Hadley and Massion (1985), on the other hand, found that altitude had inverse effects on Q10 and Ta. Low-altitude populations presented low Q10 at low Ta and high-altitude populations presented high Q10 over the same temperature range. However, the pattern was completely reversed at a higher temperature range: low-altitude populations presented high Q10, and so on. Our results suggest a similar, but perhaps more surprising, outcome: first, there is intrapopulation variation in individual Q10 values of around 30%; second, this variation shows a significant dependence on Ta; third, the dependence is negative, which suggests a trade-off, where individuals with low Q10 at high Ta present high Q10 at low Ta, and the contrary for individuals with high Q10 at high Ta.

What could be the explanation for such an unusual outcome? We recomputed individual Q10 values several times and the results remained unchanged, so we believe that this finding is not an artefact. The following mechanism, modified from Heinrich (1977), and applied by Casey and Knapp (1987) to explain their results with caterpillars, provides a good explanation. Metabolic rate, as well as its thermal sensitivity, depends on biochemical reactions inside cells and tissues. These reactions are organized in metabolic pathways, whose efficiency depends primarily on limiting pathways which, in turn, depend on enzyme complexes. Enzymes in different individuals have different thermal optima. The point is that perhaps a polymorphism in such enzyme complexes could exist in a population. Then, if a key metabolic pathway is unique for an individual, it could be that such an animal with a low optimum would perform better (i.e. present higher Q10) at low temperatures but not at high temperatures. Other individuals, stocked with an enzyme complex with a higher thermal optimum, would present higher Q10 at higher Ta, but not at low Ta. Such a trade-off polymorphism would produce a response to selection, if sensitivity to temperature influences fitness.

ACKNOWLEDGEMENTS

Financial support was provided by a CONICYT doctoral thesis fellowship to M.A.L. R. F. N. and F. B. both acknowledge a FONDAP 1501-0001 (Program 1) grant. We thank M. Elgueta from Museo Nacional de Historia Natural de Chile, for kindly agreeing to assist us in identifying specimens.

  • © The Company of Biologists Limited 2003

References

  1. ↵
    Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2002). Metabolic cold adaptation in insects: a large-scale perspective. Funct. Ecol. 16,332 -338.
    OpenUrlCrossRef
  2. ↵
    Alexander, R. M. (1999). Energy for Animal Life. New York: Oxford University Press.
  3. ↵
    Anderson, J. F., Lanciani, C. A. and Giesel, J. T. (1989). Diel cycles and metabolic rates in Drosophila. Comp. Biochem. Physiol. 94A,269 -271.
    OpenUrlCrossRef
  4. ↵
    Ashby, P. D. (1997). Conservation of mass-specific metabolic rate among high- and low- elevation populations of the acridid grasshopper Xanthippus corallipes. Physiol. Biochem. Zool. 70,701 -711.
    OpenUrl
  5. ↵
    Bech, C., Langseth, I. and Gabrielsen, G. W. (1999). Repeatability of basal metabolism in breeding female kittiwakes. Proc. R. Soc. Lond. B 266,2161 -2167.
    OpenUrlAbstract/FREE Full Text
  6. ↵
    Bennett, A. F. (1987). Inter-individual variability: an under utilized resource. New Directions in Ecological Physiology (ed. M. E. Feder, A. F. Bennett, W. R. Burggren and R. B. Huey), pp. 147-169. Cambridge: Cambridge University Press.
  7. ↵
    Berteaux, D., Thomas, D. W., Bergeron, J. M. and Lapierre, H. (1996). Repeatability of daily field metabolic rate in female meadow voles (Microtus pennsilvanicus). Funct. Ecol. 10,751 -759.
    OpenUrlCrossRef
  8. ↵
    Blouin-Demers, G. and Weatherhead, P. J. (2001). An experimental test of the link between foraging, habitat selection and thermoregulation in black rat snakes Elaphe obsoleta obsoleta. J. Anim. Ecol. 70,1006 -1013.
    OpenUrlCrossRef
  9. ↵
    Calvo, M., Rodas, G., Vallejo, M., Estruch, A., Arcas, A., Javierre, C., Viscor, G. and Ventura, J. L. (2002). Heritability of explosive power and anaerobic capacity in humans. Eur. J. Appl. Physiol. 86,218 -225.
    OpenUrlCrossRefPubMedWeb of Science
  10. ↵
    Casey, T. M. and Knapp, R. (1987). Caterpillar thermal adaptation: behavioral differences reflect metabolic thermal sensitivities. Comp. Biochem. Physiol. 86A,679 -682.
    OpenUrlCrossRef
  11. ↵
    Chappell, M. A. (1983). Metabolism and thermoregulation in desert and montane grasshoppers. Oecologia (Berlin) 56,126 -131.
    OpenUrlCrossRef
  12. ↵
    Chappell, M. A., Bachman, G. C. and Odell, J. P. (1995). Repeatability of maximal aerobic performance in Belding's ground squirrels, Spermophilus beldingi. Funct. Ecol. 9, 498-504.
    OpenUrlCrossRef
  13. ↵
    Chappell, M. A. and Rogowitz, G. L. (2000). Mass, temperature and metabolic effects on discontinuous gas exchange cycles in eucalyptus-boring beetles (Coleoptera: Cerambycidae). J. Exp. Biol. 203,3809 -3820.
    OpenUrlAbstract
  14. ↵
    Chown, S. L., van der Merwe, M. and Smith, V. R. (1997). The influence of habitat and altitude on oxygen uptake in sub-Antarctic weevils. Physiol. Biochem. Zool. 70,116 -124.
    OpenUrl
  15. ↵
    Chown, S. L. (1997). Thermal sensitivity of oxygen uptake of Diptera from sub-Antarctic South Georgia and Marion Island. Polar Biol. 17,81 -86.
    OpenUrlCrossRef
  16. ↵
    Cooper, P. D. (1993). Field metabolic rate and cost of activity in two tenebrionid beetles from the Mojave Desert of North America. J. Arid Environ. 24,165 -175.
  17. ↵
    Cossins, A. R. and Bowler K. (1987). Temperature Biology of Animals. London: Chapman and Hall.
  18. ↵
    Crnokrak, P. and Roff, D. A. (2002). Trade-offs to flight capability in Grillus firmus: the influence of whole-organism respiration rate on fitness. J. Evol. Biol. 15,388 -398.
    OpenUrlCrossRef
  19. ↵
    Davis, A. L. V., Chown, S. L. and Scholtz, C. H. (1999). Discontinuous gas exchange cycles in Scarabelus dung beetles (Coleoptera: Scarabaeidae): mass-scaling and temperature dependence. Physiol. Biochem. Zool. 72,555 -565.
    OpenUrlCrossRefPubMed
  20. ↵
    Di Castri, F. and Hajek, E. R. (1976). Bioclimatología de Chile. Santiago: Editorial Universidad Católica.
  21. ↵
    Dohm, M. R. (2002). Repeatability estimates do not always set an upper limit to heritability. Funct. Ecol. 16,273 -280.
    OpenUrlCrossRef
  22. ↵
    Falconer, D. S. and Mackay, T. F. C. (1997). Introduction to Quantitative Genetics. Edinburgh: Longman.
  23. ↵
    Forlow, L. J. and MacMahon, J. A. (1988). A seasonal comparison of metabolic and water loss rates of three species of grasshoppers. Comp. Biochem. Physiol. 89A, 51-60.
    OpenUrlCrossRef
  24. ↵
    Garland, T. and Bennett, A. F. (1990). Quantitative genetics of maximal oxygen consumption in a garter snake. Am. J. Physiol. 259,R986 -R992.
  25. ↵
    Garland, T. and Else, P. L. (1987). Seasonal, sexual and individual variation in endurance and activity metabolism in lizards. Am. J. Physiol. 252,R439 -R449.
  26. ↵
    Gibert, P., Huey, R. B. and Gilchrist, G. W. (2001). Locomotor performance of Drosophila melanogaster: interactions among developmental and adult temperatures, age, and geography. Evolution 55,205 -209.
    OpenUrlCrossRefPubMedWeb of Science
  27. ↵
    Hadley, N. F. and Massion, D. D. (1985). Oxygen consumption, water loss and cuticular lipids of high and low elevation populations of the grasshopper Aeropedellus clavatus (Orthoptera: Acrididae). Comp. Biochem. Physiol. 80A,307 -311.
    OpenUrlCrossRef
  28. ↵
    Harrison, J. F. and Fewell, J. H. (1995). Thermal effects on feeding behavior and net energy intake in a grasshopper experiencing large diurnal fluctuations in body temperature. Physiol. Zool. 68,453 -473.
    OpenUrl
  29. ↵
    Hayes, J. P. and Jenkins, S. H. (1997). Individual variation in mammals. J. Mammal. 78,274 -293.
    OpenUrlCrossRef
  30. ↵
    Hayes, J. P., Bible, C. A. and Boone, J. D. (1998). Repeatability of mammalian physiology: evaporative water loss and oxygen consumption of Dipodomys merriami. J. Mammal. 79,475 -485.
    OpenUrlCrossRef
  31. ↵
    Huey, R. B. and Berrigan, D. (2001). Temperature, demography, and ectotherm fitness. Am. Nat. 158,204 -210.
    OpenUrlCrossRef
  32. ↵
    Huey, R. B. and Dunham, A. E. (1987). Repeatability of locomotor performance in natural populations of the lizard Sceloporus merriami. Evolution 41,1116 -1120.
    OpenUrlCrossRefWeb of Science
  33. ↵
    Heinrich, B. (1977). Why have some animals evolved to regulate a high body temperature? Am. Nat. 111,623 -640.
    OpenUrlCrossRefWeb of Science
  34. Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hoang, A., Hill, A. V. S., Beerli, P. and Kingsolver, J. G. (2001). Strength and tempo of directional selection in the wild. Proc. Natl. Acad. Sci. USA 98,9157 -9160.
    OpenUrlAbstract/FREE Full Text
  35. ↵
    Jaksic, F. (2001). Spatiotemporal variation patterns of plants and animals in San Carlos de Apoquindo, central Chile. Rev. Chil. Hist. Nat. 74,459 -484.
    OpenUrl
  36. Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hill, C. E., Hoang, A., Gibert, P. and Beerli, P. (2001). The strength of phenotypic selection in natural populations. Am. Nat. 157,245 -261.
    OpenUrlCrossRefPubMedWeb of Science
  37. ↵
    Kolluru, G. R., Zuk, M. and Chappell, M. A. (2002). Reduced reproductive effort in male field crickets infested with parasitoid fly larvae. Behav. Ecol. 13,607 -614.
    OpenUrlAbstract/FREE Full Text
  38. ↵
    Lamborot, X. (1985). Hoplosphyrum griseus (Phillipi) y Microgryllus pallipes Phillipi, dos especies de grillos escamosos en Chile. Publicación Ocasional No 42. Santiago: Museo Nacional de Historia Natural.
  39. ↵
    Lessels, C. M. and Boag, P. T. (1987). Unrepeatable repeatabilities: a common mistake. Auk 104,116 -121.
    OpenUrlWeb of Science
  40. ↵
    Lighton, J. R. B. (1996). Discontinuous gas exchange in insects. Annu. Rev. Entomol. 41,309 -324.
    OpenUrlCrossRefPubMedWeb of Science
  41. ↵
    Lighton, J. R. B. (2002). Lack of discontinuous gas exchange in a tracheate arthropod, Leiobunum townsendi (Arachnida, Opiliones). Physiol. Entomol. 27,170 -174.
    OpenUrlCrossRef
  42. ↵
    Lynch, M. and Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sunderland: Sinauer. 980 pp.
  43. ↵
    Madsen, T. and Shine, R. (1999). Life history consequences of nest-site variations in tropical pythons (Liasis fuscus). Ecol. 80,989 -997.
    OpenUrlCrossRef
  44. ↵
    McNab, B. K. (2002). The physiological ecology of vertebrates. A View from Energetics, 1st edition, Vol. 1. Cornell: Comstock.
  45. ↵
    Nespolo, R. F., Bacigalupe, L. D. and Bozinovic, F. (2003). Heritability of energetics in a wild mammal, the leaf-eared mouse (Phyllotis darwini). Evolution 57,1679 -1688.
    OpenUrlCrossRefPubMedWeb of Science
  46. ↵
    Nielsen, M. G., Elmes, G. W. and Kipyatkov, V. E. (1999). Respiratory Q10 varies between populations of two species of Myrmica ants according to the latitude of their sites. J. Insect Physiol. 45,559 -564.
    OpenUrlCrossRefPubMedWeb of Science
  47. ↵
    Parkhurst, D. F. (2001). Statistical significance tests: equivalence and reverse tests should reduce misinterpretation. BioSci. 51,1051 -1057.
    OpenUrlCrossRef
  48. ↵
    Prestwich, K. N. and Walker, T. J. (1981). Energetics of singing in crickets: effect of temperature in three trilling species (Orthoptera: Gryllidae). Oecologia (Berlin) 143,199 -212.
    OpenUrl
  49. ↵
    Rao, K. P. and Bullock, T. H. (1954). Q10 as a function of size and habitat temperature in poikilotherms. Am. Nat. 88,33 -44.
    OpenUrlCrossRefWeb of Science
  50. ↵
    Reinhold, K. (1999). Energetically costly behaviour and the evolution of resting metabolic rate in insects. Funct. Ecol. 13,217 -224.
  51. ↵
    Rogowitz, G. L. and Chappell, M. A. (2000). Energy metabolism of eucalyptus-boring beetles at rest and during locomotion: gender makes a difference. J. Exp. Biol. 203,1131 -1139.
    OpenUrlAbstract
  52. ↵
    Rourke, B. (2000). Geographic and altitudinal variation in water balance and metabolic rate in a California grasshopper, Melanoplus sanguinipes. J. Exp. Biol. 203,2699 -2712.
    OpenUrlAbstract
  53. ↵
    Schmidt-Nielsen, K. (1995). Animal Physiology. New York: Cambridge University Press.
  54. ↵
    Sibly, R. M. and Atkinson, D. (1994). How rearing temperature affects optimal adult size in ectotherms. Funct. Ecol. 8,486 -493.
    OpenUrlCrossRef
  55. ↵
    Vleck, D. (1987). Measurement of O2 consumption, CO2 production, and water vapor production in a closed system. J. Appl. Physiol. 62,2103 -2106.
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Intrapopulational variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Research Article
Intrapopulational variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket
R. F. Nespolo, M. A. Lardies, F. Bozinovic
Journal of Experimental Biology 2003 206: 4309-4315; doi: 10.1242/jeb.00687
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Research Article
Intrapopulational variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket
R. F. Nespolo, M. A. Lardies, F. Bozinovic
Journal of Experimental Biology 2003 206: 4309-4315; doi: 10.1242/jeb.00687

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • SUMMARY
    • Introduction
    • Materials and methods
    • Results
    • Discussion
    • ACKNOWLEDGEMENTS
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Angling gear avoidance learning in juvenile red sea bream: evidence from individual-based experiments
  • Tactile active sensing in an insect plant pollinator
  • Omega-3 fatty acids accelerate fledging in an avian marine predator: a potential role of cognition
Show more RESEARCH ARTICLE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Welcome to JEB’s new Editor Monica Daley

We are pleased to welcome Monica Daley to JEB’s Editorial team. Monica has had a long association with JEB before taking up her new role, overseeing peer review of neuromuscular physiology, terrestrial biomechanics and integrative physiology of locomotion.


In the field with Robyn Hetem

Continuing our fieldwork series, Robyn Hetem reflects on working with species ranging from aardvark to zebra, and the impact COVID-19 has had on fieldwork.


Read & Publish participation continues to grow

“It is particularly encouraging for early career researchers, as it allows them to display their research globally without the need to find costs to cover the open access option.”

Professor Fernando Montealegre-Z (University of Lincoln) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Nocturnal reef residents have deep-sea-like eyes

Fanny de Busserolles and colleagues from The University of Queensland have discovered that the eyes of nocturnal reef fish have multibank retinas, layers of photoreceptors, similar to the eyes of deep-sea fish that live in dim light conditions.


Mechanisms underlying gut microbiota–host interactions in insects

In their Review, Konstantin Schmidt and Philipp Engel summarise recent findings about the mechanisms involved in gut colonisation and the provisioning of beneficial effects in gut microbiota–insect symbiosis.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992