Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
Journal Articles
Redox control in development and evolution: evidence from colonial hydroids
N.W. Blackstone
Journal of Experimental Biology 1999 202: 3541-3553;
N.W. Blackstone
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Redox chemistry, involving the transfer of electrons and hydrogen atoms, is central to energy conversion in respiration, and the control of gene expression by redox state commonly occurs in bacteria, allowing rapid responses to environmental changes, for instance, in the food supply. Colonial metazoans often encrust surfaces over which the food supply varies in time or space; hence, in these organisms, redox control of the development of feeding structures and gastrovascular connections could be similarly adaptive, allowing colonies to adjust the timing and spacing of structures in response to a variable food supply. To investigate the possibility of redox control of colony development, the redox states of hydractiniid hydroid colonies were manipulated experimentally. As in many colonial animals, hydractiniid hydroids display a range of morphological variation from sheet-like forms (i.e. closely spaced polyps with high rates of stolon branching) to runner-like forms (i. e. widely spaced polyps with low rates of stolon branching). In the runner-like Podocoryna carnea, azide, a blocker of the electron transport chain, and dinitrophenol, an uncoupler of oxidative phosphorylation, diminished the largely polyp-driven gastrovascular flow to a similar extent. Measures of the redox state of the polyp epitheliomuscular cells using the fluorescence of NAD(P)H suggest that azide shifts the redox state in the direction of reduction, while dinitrophenol shifts the redox state in the direction of oxidation. Colony development corresponds to redox state in that azide-treated colonies were more runner-like, while dinitrophenol-treated colonies were more sheet-like. Nevertheless, the functional role of polyps in feeding and generating gastrovascular flow probably contributed to a trade-off between polyp number and size such that azide-treated colonies had few large polyps, while dinitrophenol-treated colonies had many small polyps. Regardless of the treatment, P. carnea colonies developed to maturity and produced swimming medusae in the normal fashion. In the sheet-like Hydractinia symbiolongicarpus, treatment with azide resulted in complete suppression of the development of both the stolonal mat and the blastostyles, the reproductive polyps. Azide-treated H. symbiolongicarpus colonies therefore developed in a juvenilized, runner-like manner and much resembled colonies of P. carnea. Following cessation of azide treatment in H. symbiolongicarpus, normal colony development ensued, and both a stolonal mat and blastostyles formed. In both hydroid species, relative oxidization favors sheet-like growth, while relative reduction favors runner-like growth. Since feeding triggers strong contractions of polyp epitheliomuscular cells and results in relative oxidation, this experimental evidence supports the hypothesis of adaptive redox control of colony development and evolution.

  • © 1999 by Company of Biologists
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Redox control in development and evolution: evidence from colonial hydroids
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Articles
Redox control in development and evolution: evidence from colonial hydroids
N.W. Blackstone
Journal of Experimental Biology 1999 202: 3541-3553;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
Redox control in development and evolution: evidence from colonial hydroids
N.W. Blackstone
Journal of Experimental Biology 1999 202: 3541-3553;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Sarcomere number regulation maintained after immobilization in desmin-null mouse skeletal muscle
  • The application of ground force explains the energetic cost of running backward and forward
  • Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Welcome to JEB’s new Editor Monica Daley

We are pleased to welcome Monica Daley to JEB’s Editorial team. Monica has had a long association with JEB before taking up her new role, overseeing peer review of neuromuscular physiology, terrestrial biomechanics and integrative physiology of locomotion.


In the field with Robyn Hetem

Continuing our fieldwork series, Robyn Hetem reflects on working with species ranging from aardvark to zebra, and the impact COVID-19 has had on fieldwork.


Read & Publish participation continues to grow

“It is particularly encouraging for early career researchers, as it allows them to display their research globally without the need to find costs to cover the open access option.”

Professor Fernando Montealegre-Z (University of Lincoln) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Nocturnal reef residents have deep-sea-like eyes

Fanny de Busserolles and colleagues from The University of Queensland have discovered that the eyes of nocturnal reef fish have multibank retinas, layers of photoreceptors, similar to the eyes of deep-sea fish that live in dim light conditions.


Mechanisms underlying gut microbiota–host interactions in insects

In their Review, Konstantin Schmidt and Philipp Engel summarise recent findings about the mechanisms involved in gut colonisation and the provisioning of beneficial effects in gut microbiota–insect symbiosis.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992