Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
Journal Articles
The distribution of a CRF-like diuretic peptide in the blood-feeding bug Rhodnius prolixus
V.A. Te Brugge, S.M. Miksys, G.M. Coast, D.A. Schooley, I. Orchard
Journal of Experimental Biology 1999 202: 2017-2027;
V.A. Te Brugge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.M. Miksys
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.M. Coast
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.A. Schooley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I. Orchard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The blood-feeding bug Rhodnius prolixus ingests a large blood meal, and this is followed by a rapid diuresis to eliminate excess water and salt. Previous studies have demonstrated that serotonin and an unidentified peptide act as diuretic factors. In other insects, members of the corticotropin-releasing factor (CRF)-related peptide family have been shown to play a role in post-feeding diuresis. Using fluorescence immunohistochemistry and immunogold labelling with antibodies to the Locusta CRF-like diuretic hormone (Locusta-DH) and serotonin, we have mapped the distribution of neurones displaying these phenotypes in R. prolixus. Strong Locusta-DH-like immunoreactivity was found in numerous neurones of the central nervous system (CNS) and, in particular, in medial neurosecretory cells of the brain and in posterior lateral neurosecretory cells of the mesothoracic ganglionic mass (MTGM). Positively stained neurohaemal areas were found associated with the corpus cardiacum (CC) and on abdominal nerves 1 and 2. In addition, Locusta-DH-like immunoreactive nerve processes were found over the posterior midgut and hindgut. Double-labelling studies for Locusta-DH-like and serotonin-like immunoreactivity demonstrated some co-localisation in the CNS; however, no co-localisation was found in the medial neurosecretory cells of the brain, the posterior lateral neurosecretory cells of the MTGM or neurohaemal areas. To confirm the presence of a diuretic factor in the CC and abdominal nerves, extracts were tested in Malpighian tubule secretion assays and cyclic AMP assays. Extracts of the CC and abdominal nerves caused an increase in the rate of secretion and an increase in the level of cyclic AMP in the Malpighian tubules of fifth-instar R. prolixus. The presence of the peptide in neurohaemal terminals of the CC and abdominal nerves that are distinct from serotonin-containing terminals indicates that the peptide is capable of being released into the haemolymph and that this release can be independent of the release of serotonin.

  • © 1999 by Company of Biologists

REFERENCES

    1. Aston, R. J. and
    2. White, A. F.
    (1974). Isolations and purification of the diuretic hormone from Rhodnius prolixus. J. Insect Physiol 20, 1673–.
    OpenUrlCrossRefPubMed
    1. Audsley, N.,
    2. Goldsworthy, G. J. and
    3. Coast, G. M.
    (1997). Circulating levels of Locusta diuretic hormone: The effect of feeding. Peptides 18, 50–.
    1. Barrett, F. M. and
    2. Orchard, I.
    (1990). Serotonin-induced elevation of cAMP levels in the epidermis of the blood-sucking bug, Rhodnius prolixus. J. Insect Physiol 36, 625–.
    OpenUrlCrossRef
    1. Berlind, A. and
    2. Maddrell, S. H. P.
    (1979). Changes in the hormone activity of single neurosecretory cell bodies during a physiological secretion cycle. Brain Res 161, 459–.
    OpenUrlCrossRefPubMed
    1. Blackburn, M. B.,
    2. Kingan, T. G.,
    3. Bondar, W.,
    4. Shabanowitz, J.,
    5. Hunt, D. F.,
    6. Kemp, T.,
    7. Wagner, R. M.,
    8. Raina, A. K.,
    9. Schnee, M. E. and
    10. Ma, M. C.
    (1991). Isolation and identification of a new diuretic peptide from the tobacco hornworm, Manduca sexta. Biochem. Biophys. Res. Commun 181, 927–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Blake, P. D.,
    2. Kay, I. and
    3. Coast, G. M.
    (1996). Myotropic activity of Acheta diuretic peptide on the foregut of the house cricket, Acheta domesticus (L.). J. Insect Physiol 42, 1053–.
    OpenUrlCrossRef
    1. Chen, Y.,
    2. Veenstra, J. A.,
    3. Hagedorn, H. and
    4. Davis, N. T.
    (1994). Leucokinin and diuretic hormone immunoreactivity of neurons in the tobacco hornworm, Manduca sexta and co-localization of this immunoreactivity in lateral neurosecretory cells of abdominal ganglia. Cell Tissue Res 278, 493–.
    OpenUrlPubMed
    1. Clottens, F. L.,
    2. Holman, G. M.,
    3. Coast, G. M.,
    4. Totty, N. F.,
    5. Hayes, T. K.,
    6. Kay, A. I.,
    7. Mallet, I.,
    8. Wright, M. S.,
    9. Chung, J.-S.,
    10. Truong, O. and
    11. Bull, D. L.
    (1994). Isolation and characterization of a diuretic peptide common to the house fly and stable fly. Peptides 15, 971–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Coast, G. M.
    (1996). Neuropeptides implicated in the control of diuresis in insects. Peptides 17, 327–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Coles, G. C.
    (1966). Studies on the hormonal control of metabolism in Rhodnius prolixus Stål. II. The fifth-stage insect. J. Insect Physiol 12, 1029–.
    OpenUrlCrossRefPubMed
    1. Emery, S. B.,
    2. Ma, M. C.,
    3. Wong, W. K. R.,
    4. Tips, A. and
    5. De Loof, A.
    (1994). Immunocytochemical localization of a diuretic peptide Manduca diuresin (Mas DPII) in the brain and suboesophageal ganglion of the tobacco hawkmoth Manduca sexta (Lepidoptera: Sphingidae). Arch. Insect. Biochem. Physiol 27, 137–.
    OpenUrlCrossRef
    1. Froesch, D.
    (1973). A simple method to estimate the true diameter of synaptic vesicles. J. Microsc 98, 85–.
    OpenUrlPubMedWeb of Science
    1. Furuya, K.,
    2. Schegg, K. M. and
    3. Schooley, D. A.
    (1998). Isolation and identification of a second diuretic hormone from Tenebrio molitor. Peptides 19, 619–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Furuya, K.,
    2. Schegg, K. M.,
    3. Wang, H.,
    4. King, D. S. and
    5. Schooley, D. A.
    (1995). Isolation and identification of a diuretic hormoneV. A. TEBRUGGEANDOTHERS2027 CRF-like diuretic peptide in Rhodnius prolixusfrom the mealworm Tenebrio molitor. Proc. Natl. Acad. Sci. USA 92, 12323–.
    OpenUrlAbstract/FREE Full Text
    1. Kataoka, H.,
    2. Troetschler, R. G.,
    3. Li, J. P.,
    4. Kramer, S. J.,
    5. Carney, R. L. and
    6. Schooley, D. A.
    (1989). Isolation and identification of a diuretic hormone from the tobacco hornworm, Manduca sexta. Proc. Natl. Acad. Sci. U.S.A 86, 2976–.
    OpenUrlAbstract/FREE Full Text
    1. Kay, I.,
    2. Patel, M.,
    3. Coast, G. M.,
    4. Totty, N. F.,
    5. Mallet, A. I. and
    6. Goldsworthy, G. J.
    (1992). Isolation, characterization and biological activity of a CRF-related diuretic peptide from Periplaneta americana L. Regul. Peptides 42, 111–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Lane, N. J.,
    2. Leslie, R. A. and
    3. Swales, L. S.
    (1975). Insect peripheral nerves: accessibility of neurohaemal regions to lanthanum. J. Cell Sci 18, 179–.
    OpenUrlAbstract/FREE Full Text
    1. Lange, A. B. and
    2. Orchard, I.
    (1986). Identified octopaminergic neurons modulate contractions of locust visceral muscle via adenosine 3,5 -monophosphate (cyclic AMP). Brain Res 363, 340–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Lange, A. B.,
    2. Orchard, I. and
    3. Barrett, F. M.
    (1989). Changes in haemolymph serotonin levels associated with feeding in the blood-sucking bug, Rhodnius prolixus. J. Insect Physiol 35, 393–.
    OpenUrlCrossRef
    1. Maddrell, S. H. P.
    (1963). Excretion in the blood-sucking bug, Rhodnius prolixus Stål. I. The control of diuresis. J. Exp. Biol 40, 247–.
    OpenUrlAbstract
    1. Maddrell, S. H. P.
    (1964). Excretion in the blood-sucking bug, Rhodnius prolixus Stål. II. The normal course of diuresis and the effect of temperature. J. Exp. Biol 41, 163–.
    OpenUrlAbstract/FREE Full Text
    1. Maddrell, S. H. P.
    (1964). Excretion in the blood-sucking bug, Rhodnius prolixus Stål. III. The control of the release of the diuretic hormone. J. Exp. Biol 41, 459–.
    OpenUrlAbstract/FREE Full Text
    1. Maddrell, S. H. P.
    (1966). The site of release of the diuretic hormone in Rhodnius — a new neurohaemal system in insects. J. Exp. Biol 45, 499–.
    OpenUrlAbstract/FREE Full Text
    1. Maddrell, S. H. P.,
    2. Herman, W. S.,
    3. Farndale, R. W. and
    4. Riegel, J. A.
    (1993). Synergism of hormones controlling epithelial fluid transport in an insect. J. Exp. Biol 174, 65–.
    OpenUrlAbstract/FREE Full Text
    1. Maddrell, S. H. P.,
    2. Herman, W. S.,
    3. Mooney, R. L. and
    4. Overton, J. A.
    (1991). 5-Hydroxytryptamine: a second diuretic hormone in Rhodnius prolixus. J. Exp. Biol 156, 557–.
    OpenUrlAbstract/FREE Full Text
    1. Maddrell, S. H. P.,
    2. Pilcher, D. E. M. and
    3. Gardiner, B. O. C.
    (1969). Stimulatory effect of 5-hydroxytryptamine (serotonin) on the secretion by Malpighian tubules of insects. Nature 222, 784–.
    OpenUrlCrossRefPubMed
    1. Miksys, S. and
    2. Orchard, I.
    (1994). Immunogold labelling of serotonin-like and FMRFa-like immunoreactive material in neurohaemal areas on abdominal nerves of Rhodnius prolixus. Cell Tissue Res 278, 145–.
    OpenUrlPubMed
    1. Montoreano, R.,
    2. Triana, F.,
    3. Abate, T. and
    4. Rangel-Aldao, R.
    (1990). Cyclic AMP in the Malpighian tubule fluid and in the urine of Rhodnius prolixus. Gen. Comp. Endocr 77, 136–.
    OpenUrlCrossRefPubMed
    1. Montuenga, L. M.,
    2. Zudaire, E.,
    3. Prado, M. A.,
    4. Audsley, N.,
    5. Burrell, M. A. and
    6. Coast, G. M.
    (1996). Presence of Locusta diuretic hormone in endocrine cells of the ampullae of locust Malpighian tubules. Cell Tissue Res 285, 331–.
    OpenUrlCrossRef
    1. Nässel, D. R.
    (1996). Advances in the immunocytochemical localization of neuroactive substances in the insect in the insect nervous system. J. Neurosci. Meth 69, 3–.
    OpenUrlCrossRefPubMed
    1. Nicolson, S. W.
    (1993). The ionic basis of fluid secretion in insect Malpighian tubules: Advances in the last ten years. J. Insect Physiol 39, 451–.
    OpenUrlCrossRef
    1. Nuñez, J. A.
    (1962). Regulation and water economy in Rhodnius prolixus. Nature 194, 704–.
    OpenUrl
    1. Nuñez, J. A.
    (1963). Probable mechanism regulating water economy of Rhodnius prolixus. Nature 197, 312–.
    OpenUrl
    1. Orchard, I.,
    2. Lange, A. B.,
    3. Cook, H. and
    4. Ramirez, J. M.
    (1989). A subpopulation of dorsal unpaired medial neurons in the blood feeding insect Rhodnius prolixus displays serotonin-like immunoreactivity. J. Comp. Neurol 289, 118–.
    OpenUrlCrossRefPubMed
    1. Patel, M.,
    2. Chung, J. S.,
    3. Kay, L.,
    4. Mallet, A. L.,
    5. Gibbon, C. R.,
    6. Thompson, K. S. J.,
    7. Bacon, J. P. and
    8. Coast, G. M.
    (1994). Localization of Locusta -DP in locust CNS and hemolymph satisfies initial hormonal criteria. Peptides 15, 591–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Patel, M.,
    2. Hayes, T. K. and
    3. Coast, G. M.
    (1995). Evidence for the hormonal function of a CRF-related diuretic peptide (Locusta -DP) in Locusta migratoria. J. Exp. Biol 198, 793–.
    OpenUrlAbstract/FREE Full Text
    1. Quinlan, M. C.,
    2. Tublitz, N. J. and
    3. O'Donnell, M. J.
    (1997). Anti-diuresis in the blood-feeding insect Rhodnius prolixus Stål: the peptide CAP2band cyclic GMP inhibit Malpighian tubule fluid secretion. J. Exp. Biol 200, 2363–.
    OpenUrlAbstract/FREE Full Text
    1. Steel, C. G. and
    2. Harmsen, R.
    (1971). Dynamics of the neurosecretory system in the brain of an insect, Rhodnius prolixus, during growth and molting. Gen. Comp. Endocr 17, 125–.
    OpenUrlCrossRefPubMed
    1. Thompson, K. S. J.,
    2. Rayne, R. C.,
    3. Gibbon, C. R.,
    4. May, S. T.,
    5. Patel, M.,
    6. Coast, G. M. and
    7. Bacon, J. P.
    (1995). Cellular co-localization of diuretic peptides in locusts: A potent control mechanism. Peptides 16, 95–.
    OpenUrlCrossRefPubMed
    1. Tsang, P. W. and
    2. Orchard, I.
    (1991). Distribution of FMRFamide-related peptides in the blood-feeding bug, Rhodnius prolixus. J. Comp. Neurol 311, 17–.
    OpenUrlCrossRefPubMed
    1. Veenstra, J. A.,
    2. Lau, G. W.,
    3. Agricola, H. J. and
    4. Pezel, D. H.
    (1995). Immunohistological localisation of regulatory peptides in the midgut of the female mosquito Aedes aegypti. Histochem. Cell Biol 104, 337–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Zč itnčan, D.,
    2. Sč auman, I. and
    3. Sehnal, F.
    (1993). Peptidergic innervation and endocrine cells of insect midgut. Arch. Insect Biochem. Physiol 22, 113–.
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The distribution of a CRF-like diuretic peptide in the blood-feeding bug Rhodnius prolixus
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Articles
The distribution of a CRF-like diuretic peptide in the blood-feeding bug Rhodnius prolixus
V.A. Te Brugge, S.M. Miksys, G.M. Coast, D.A. Schooley, I. Orchard
Journal of Experimental Biology 1999 202: 2017-2027;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
The distribution of a CRF-like diuretic peptide in the blood-feeding bug Rhodnius prolixus
V.A. Te Brugge, S.M. Miksys, G.M. Coast, D.A. Schooley, I. Orchard
Journal of Experimental Biology 1999 202: 2017-2027;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Juvenile coho salmon locomotion and mosaic muscle are modified by 3′,3′,5′-tri-iodo-l-thyronine (T(3))
  • The dynamics and scaling of force production during the tail-flip escape response of the California spiny lobster Panulirus interruptus
  • Comparison of the efficiency of rat papillary muscles during afterloaded isotonic contractions and contractions with sinusoidal length changes
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Predicting the Future: Species Survival in a Changing World

Read our new special issue exploring the significant role of experimental biology in assessing and predicting the susceptibility or resilience of species to future, human-induced environmental change.


Adam Hardy wins the 2020 Journal of Experimental Biology Outstanding Paper Prize

Congratulations to winner Adam Hardy for his work showing that goby fins are as touch sensitive as primate fingertips. Read Adam’s paper and find out more about the 12 papers nominated for the award.


Stark trade-offs and elegant solutions in arthropod visual systems

Many elegant eye specializations that evolved in response to visual challenges continue to be discovered. A new Review by Meece et al. summarises exciting solutions evolved by insects and other arthropods in response to specific visual challenges.


Head bobbing gives pigeons a sense of perspective

Pigeons might look goofy with their head-bobbing walk, but it turns out that the ungainly head manoeuvre allows the birds to judge distance.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992