Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
A protein titration hypothesis for the temperature-dependence of tissue CO2 content in reptiles and amphibians.
J N Stinner, L K Hartzler, M R Grguric, D L Newlon
Journal of Experimental Biology 1998 201: 415-424;
J N Stinner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L K Hartzler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M R Grguric
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D L Newlon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Whole-body CO2 stores are known to increase with cooling in reptiles and amphibians (-[CO2]/T ). The aim of this study was to determine the mechanism(s) producing this inverse relationship. The [CO2]/T coefficients were determined for eight reptilian and one amphibian species and were found to differ by a factor of approximately 10, from -0.21 mmol kg-1 °C-1 in the Mediterranean spur-thighed tortoise Testudo graeca to -0.02 mmol kg-1 °C-1 in the bullfrog Rana catesbeiana. The [CO2]/T coefficients were correlated with values in the literature for in vivo plasma pH/T coefficients ([CO2]/T=-0.18­8.24pH/T; r2=0.87). Plasma electrolyte concentrations (Na+, K+, Ca2+, Mg2+, Cl-, inorganic phosphate, SO42- and lactate), [protein], [CO2], PCO2 and pH were measured in chronically cannulated resting black racer snakes Coluber constrictor. When the temperature was reduced from 30 to 10 °C, pH increased slightly (by -0.0028 pH units °C-1), PCO2 decreased by 7 mmHg, [CO2] increased by 3.2 mmol l-1 and [HPO42-+H2PO4-] increased by 0.7 mmol l-1. Concentrations of protein and of the remaining electrolytes were not significantly different (P>0.05) at 30 and 10 °C. Net plasma protein charge, calculated from the principle of electroneutrality (the sum of the cations in mequiv = the sum of anions in mequiv), was -0.48 mequiv g-1 protein at 30 °C and -0.38 mequiv g-1 protein at 10 °C. This 21 % decrease was attributed to the increases in [CO2] (i.e. carbonic acid) and inorganic phosphate concentration. Between 30 and 10 °C, skeletal muscle pH and [CO2] in C. constrictor increased (by -0.009 units °C-1 and -0.125 mmol kg-1 °C-1, respectively), [Na+] and [Cl-] each decreased by approximately 12 mequiv l-1, and [K+] and the percentage of water did not change significantly. It is concluded that the increase in whole-body CO2 stores with cooling in reptiles and amphibians results from the passive effects of temperature changes upon the ionization constants of proteins and the active adjustment of PCO2 (ventilatory regulation), so that -pK is greater than -pH. Active transmembrane ion-exchange processes do not appear to be involved.

Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A protein titration hypothesis for the temperature-dependence of tissue CO2 content in reptiles and amphibians.
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A protein titration hypothesis for the temperature-dependence of tissue CO2 content in reptiles and amphibians.
J N Stinner, L K Hartzler, M R Grguric, D L Newlon
Journal of Experimental Biology 1998 201: 415-424;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
A protein titration hypothesis for the temperature-dependence of tissue CO2 content in reptiles and amphibians.
J N Stinner, L K Hartzler, M R Grguric, D L Newlon
Journal of Experimental Biology 1998 201: 415-424;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Meet the Editors at SICB Virtual 2021

Reserve your place to join some of the journal editors, including Editor-in-Chief Craig Franklin, at our Meet the Editor session on 17 February at 2pm (EST). Don’t forget to view our SICB Subject Collection, featuring relevant JEB papers relating to some of the symposia sessions.


2020 at The Company of Biologists

Despite 2020's challenges, we were able to bring a number of long-term projects and new ventures to fruition. As we enter a new year, join us as we reflect on the triumphs of the last 12 months.


Critical temperature window sends migratory black-headed buntings on their travels

The spring rise in temperature at black-headed bunting overwintering sites is essential for triggering the physical changes that they undergo before embarking on their spring migration – read more.


Developmental and reproductive physiology of small mammals at high altitude

Cayleih Robertson and Kathryn Wilsterman focus on high-altitude populations of the North American deer mouse in their review of the challenges and evolutionary innovations of pregnant and nursing small mammals at high altitude.


Read & Publish participation extends worldwide

“Being able to publish Open Access articles free of charge means that my article gets maximum exposure and has maximum impact, and that all my peers can read it regardless of the agreements that their universities have with publishers.”

Professor Roi Holzman (Tel Aviv University) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992