Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS
M Dickinson
Journal of Experimental Biology 1994 192: 179-206;
M Dickinson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The downstroke-to-upstroke transition of many insects is characterized by rapid wing rotation. The aerodynamic consequences of these rapid changes in angle of attack have been investigated using a mechanical model dynamically scaled to the Reynolds number appropriate for the flight of small insects such as Drosophila. Several kinematic parameters of the wing flip were examined, including the speed and axis of rotation, as well as the duration and angle of attack during the wing stroke preceding rotation. Alteration of these kinematic parameters altered force generation during the subsequent stroke in a variety of ways. 1. When the rotational axis was close to the trailing edge, the model wing could capture vorticity generated during rotation and greatly increase aerodynamic performance. This vortex capture was most clearly manifested by the generation of lift at an angle of attack of 0°. Lift at a 0° angle of attack was also generated following rotation about the leading edge, but only if the downstroke angle was large enough to generate a von Karman street. The lift may be due to an alteration in the effective angle of attack caused by the inter-vortex stream in the downstroke wake. 2. The maximum lift attained (over all angles of attack) was substantially elevated if the wing translated backwards through a wake generated by the previous stroke. Transient lift coefficient values of nearly 4 were obtained when the wing translated back through a von Karman street generated at a 76.5° angle of attack. This effect might also be explained by the influence of the inter-vortex stream, which contributes a small component to fluid velocity in the direction of translation. 3. The growth of lift with angle of attack was significantly elevated following a 7.5 chord stroke with a 76.5° angle of attack, although it was relatively constant under all other kinematic conditions. 4. The results also indicate the discrepancies between transient and time-averaged measures of performance that arise when unsteady mechanisms are responsible for force generation. Although the influence of wing rotation was strong during the first few chords of translation, averaging the performance over as little as 6.5 chords of motion greatly attenuated the effects of rotation. 5. Together, these modeling results suggest that the unsteady mechanisms generated by simple wing flips could provide an important source for the production of aerodynamic forces in insect flight. Furthermore, the extreme sensitivity to small variations in almost all kinematic parameters could provide a foundation for understanding the aerodynamic mechanisms underlying active flight control.

Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
Share
THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS
M Dickinson
Journal of Experimental Biology 1994 192: 179-206;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS
M Dickinson
Journal of Experimental Biology 1994 192: 179-206;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Editorial – The changing of the guard

In his Editorial, Hans Hoppeler announces that he will be stepping down as Editor-in-Chief of JEB in July 2020. He reflects on the history of JEB, why he has enjoyed his tenure as JEB’s Editor-in-Chief and the recent developments in the publishing world.


Big Biology podcast

JEB is partnering with the Big Biology podcast and in this sponsored episode, JEB Editor Michael Dickinson talks to the Big Biology team about the aerodynamic mechanisms of insect flight, how insects control flight with their tiny 100k neuron brain and his recent JEB paper showing how fruit flies navigate using the sun and polarized light as a compass.


Editors’ choice – An appetite for invasion: digestive physiology, thermal performance and food intake in lionfish (Pterois spp.)

A lionfish

Invasive lionfish are a colossal problem in the Mediterranean Sea and western Atlantic Ocean. Now it turns out that they are successful invaders because they invest more energy in digestion than moving about.


Travelling Fellowship – Anti-ageing in the Greenland Shark

Group photo of Pierre Delaroche and the team in Greenland

Find out how Pierre Delaroche’s Travelling Fellowship grant from the Journal of Experimental Biology took him to Greenland, where he gathered data to further understand the ageing process in the longest-living vertebrate known to science. Don’t miss the next application deadline for 2020 travel, coming up on 29 November. Where will your research take you?


Commentary – Yank: the time derivative of force is an important biomechanical variable in sensorimotor systems

A diagram showing the multi-scale anatomical structures and processes that determine the magnitude of yank

The derivative of force with respect to time does not have a standard term in physics. In their new Commentary, David C. Lin and his colleagues propose that the term ‘yank’ should be used to denote the time derivative of force.


Inside JEB – Springy ankle tether saves runners

Time-lapse photographs of a runner using the exotendon.

Runners waste energy every time their legs stop swinging, but now a team of scientists from the US and Canada have shown that a springy ankle tether can reduce runners’ energy costs by 6.4%, which is nearly the entire cost of swinging the limbs. Read the full research article here.


JEB partners with Publons!

Journal of Experimental Biology is pleased to announce a new partnership with Publons! This allows reviewers to easily track and verify every review by choosing to add the review to their Publons profile when completing the review submission form. Publons also makes it simple for reviewers to showcase their peer review contributions in a format that can be included in job and funding applications (without breaking reviewer anonymity). Read the official announcement here!


preLights – Oxygenation properties of hemoglobin and the evolutionary origins of isoform multiplicity in an amphibious air-breathing fish, the blue-spotted mudskipper (Boleophthalmus pectinirostris)

Charlotte Nelson

Charlotte Nelson highlights work in mudskippers suggesting that a diversity in expressed hemoglobin isoforms is not required for the switch between aquatic and aerial respiration.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992