Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
Journal Articles
DETERMINATION OF THE CONSTANTS OF THE HENDERSON-HASSELBALCH EQUATION, (alpha)CO2 AND pKa, IN SEA TURTLE PLASMA
E. K. Stabenau, T. A. Heming
Journal of Experimental Biology 1993 180: 311-314;
E. K. Stabenau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. A. Heming
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Hydration of CO2 yields HCO3- via the reaction: CO2 + H2O = H2CO3 = HCO3- + H+ = CO32- + 2H+. (1) Acid-base physiologists traditionally simplify the reaction by omitting the H2CO3 term and lumping all ionic CO2 species into the HCO3- term. The simplified reaction forms the basis for the familiar Henderson-Hasselbalch equation of the CO2-HCO3- buffer system: pH = pKa + log([HCO3-]/(alpha)CO2PCO2), (2) where (alpha)CO2 is the solubility coefficient relating [CO2] and PCO2 (Henry's Law). The apparent pK (pKa) in this equation lacks a rigorous thermodynamic definition. Instead, it is an empirical factor relating pH, the product of (alpha)CO2 and PCO2, and the apparent [HCO3-] (i.e. the sum of all ionic CO2 species). (alpha)CO2 and pKa are sensitive to the temperature, pH and/or the ionic strength of the reaction medium. (alpha)CO2 and pKa of normal mammalian blood plasma have been well defined over a range of temperatures and pH values (e.g. Severinghaus, 1965; Siggaard-Andersen, 1974; Reeves, 1976). These mammalian values are commonly used in analyses of the acid-base status of non- mammalian species, despite evidence that such practices can produce misleading results (Nicol et al. 1983). As an alternative, Heisler (1984; erratum in Heisler, 1986) developed complex equations for (alpha)CO2 (mmol l-1 mmHg-1) (1 mmHg=133.22 Pa) and pKa that are purported to be generally applicable to aqueous solutions (including body fluids) between 0 and 40 °C and incorporate the molarity of dissolved species (Md), solution pH, temperature (T, °C), sodium concentration ([Na+], mol l-1), ionic strength of nonprotein ions (I, mol l-1) and protein concentration ([Pr], g l-1): (alpha)CO2 = 0.1008 - 2.980 × 10–2Md + (1.218 × 10-3Md - 3.639 × 10-3)T - (1.957 × 10-5Md - 6.959 × 10-5)T2 + (7.171 × 10-8Md - 5.596 × 10-7)T3. (3) pKa = 6.583 - 1.341 × 10-2T + 2.282 × 10-4T2 - 1.516 × 10-6T3 - 0.341I0.323 - log{1 + 3.9 × 10-4[Pr] + 10A(1 + 10B)}, (4) where A = pH - 10.64 + 0.011T + 0.737I0.323 and B = 1.92 - 0.01T - 0.737I0.323 + log[Na+] + (0.651 - 0.494I)(1 + 0.0065[Pr]). Experimental validation of these equations has not appeared in the literature to date. We determined the (alpha)CO2 and pKa of blood plasma from Kemp's ridley sea turtles (Lepidochelys kempi Garman) and compared the values with those predicted from Heisler's equations. Blood samples were collected into heparinized syringes from the dorsal cervical sinus of 1- to 2-year- old animals at the National Marine Fisheries Service, Galveston Laboratory, Texas. Separated plasma was obtained by centrifugation of the whole blood samples. (alpha)CO2 was determined gasometrically by equilibrating 2 ml samples of acidified plasma (titrated to pH 2.5 with 1 mol l-1 HCl) in a tonometer with 99.9 % CO2 at 20, 25, 30 or 35 °C. Fresh samples of plasma were used at each temperature. The total CO2 content (CCO2) of plasma was measured in duplicate after 15 min of equilibration, using the methods described by Cameron (1971). The CO2 electrode (Radiometer, type E5036) was calibrated at each temperature using known [HCO3-]. Plasma PCO2 was calculated from the known fractional CO2 content of the equilibration gas, corrected for temperature, barometric pressure and water vapor pressure. Plasma water content was measured by weighing samples of plasma before and after they had been dried at 60 °C to constant weight. (alpha)CO2 was calculated as The quotient of CCO2 and PCO2, taking into account the plasma water content (mean +/− s.e.= 96+/−0.03 %). pKa was determined gasometrically by equilibrating 2 ml samples of plasma in a tonometer with 4.78 or 10.2 % CO2 (balance N2) at 20 or 30 °C. Fresh samples of plasma were used at each temperature and gas concentration. Plasma CCO2 and pH were measured in duplicate. The pH electrode (Radiometer, type G297/G2) was calibrated at each temperature using precision Radiometer pH buffers (S1500 and S1510). Plasma PCO2 was determined as above. pKa was calculated from a rearrangement of the Henderson-Hasselbalch equation (equation 2), assuming CCO2 to be the sum of [HCO3-] and [CO2] (i.e. (alpha)CO2PCO2). Heisler's equations were adapted for use with L. kempi plasma using measured values of the molarity of dissolved species (Md), [Na+] and protein concentration ([Pr]). These parameters were quantified as follows: Md with a vapor pressure osmometer (Precision Systems, model 5004), [Na+] by flame photometry (Jenway, model PFP7) and [Pr] by a standard spectrophotometric method (Sigma kit 541). The average values were Md=0.304+/−0.003 mol l-1, [Na+]=0.141+/−0.004 mol l-1 and [Pr]=28+/−3 g l- 1. The ionic strength of nonprotein ions (I) was assigned a value of 0.150 mol l-1. Computed (alpha)CO2 and pKa values were generated for a wider range of temperature and pH conditions than were used experimentally in order to emphasize the pattern and range of effects of temperature and/or pH.

  • © 1993 by Company of Biologists
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
DETERMINATION OF THE CONSTANTS OF THE HENDERSON-HASSELBALCH EQUATION, (alpha)CO2 AND pKa, IN SEA TURTLE PLASMA
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Articles
DETERMINATION OF THE CONSTANTS OF THE HENDERSON-HASSELBALCH EQUATION, (alpha)CO2 AND pKa, IN SEA TURTLE PLASMA
E. K. Stabenau, T. A. Heming
Journal of Experimental Biology 1993 180: 311-314;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
DETERMINATION OF THE CONSTANTS OF THE HENDERSON-HASSELBALCH EQUATION, (alpha)CO2 AND pKa, IN SEA TURTLE PLASMA
E. K. Stabenau, T. A. Heming
Journal of Experimental Biology 1993 180: 311-314;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Three-dimensional kinematics of skeletal elements in avian prokinetic and rhynchokinetic skulls determined by Roentgen stereophotogrammetry
  • The process of cell adhesion among dissociated single cells of Hydra: morphological observations
  • The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Predicting the Future: Species Survival in a Changing World

Read our new special issue exploring the significant role of experimental biology in assessing and predicting the susceptibility or resilience of species to future, human-induced environmental change.


Big Biology Podcast - Hollie Putnam and coral bleaching

Catch the next JEB-sponsored episode of the Big Biology Podcast where Art and Marty talk to Hollie Putnam about the causes of coral bleaching and the basic biology of corals in the hope of selectively breeding corals that can better tolerate future ocean conditions.

Read Hollie's Review on the subject, which is featured in our current special issue. 


Stark trade-offs and elegant solutions in arthropod visual systems

Many elegant eye specializations that evolved in response to visual challenges continue to be discovered. A new Review by Meece et al. summarises exciting solutions evolved by insects and other arthropods in response to specific visual challenges.


Head bobbing gives pigeons a sense of perspective

Pigeons might look goofy with their head-bobbing walk, but it turns out that the ungainly head manoeuvre allows the birds to judge distance.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992