Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
Journal Articles
Preferred speeds in terrestrial vertebrates: are they equivalent?
A. K. Perry, R. Blickhan, A. A. Biewener, N. C. Heglund, C. R. Taylor
Journal of Experimental Biology 1988 137: 207-219;
A. K. Perry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Blickhan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. A. Biewener
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. C. Heglund
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. R. Taylor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Terrestrial animals have ‘preferred speeds’ within each gait, that are used much more frequently than others for moving along the ground. Energy costs reach minimal values at these speeds within each gait. In this study we asked whether these speeds are mechanically equivalent among different animals (i.e. speeds where the same levels of peak muscle stress occur). If so, this would help in establishing a link between the energetics and the mechanics of the active muscles at these speeds, providing a first step in understanding why energy costs are minimal. We also asked whether peak muscle stress reaches a similar fraction of the maximal isometric stress at these speeds. If so, this would suggest that muscles are structured so that a similar reserve capacity remains, with a similar safety factor for avoidance of injury in response to prolonged repetitive loading. We compared two species that use quite different locomotory methods at their preferred speeds: white rats that gallop and kangaroo rats that hop. We measured peak stress in the ankle extensor muscles of these two species, as they moved at their preferred speeds, using a force platform/cine analysis technique. We also measured the maximum isometric force that this muscle group could develop in situ in the same individuals. We found the ankle extensors of white rats and kangaroo rats developed virtually identical levels of peak stress at their preferred speeds (70 +/− 6 kPa and 69 +/− 6 kPa, respectively, mean +/− S.E.), despite a fourfold difference in peak ground reaction force per unit body mass exerted on each limb. The values of peak isometric stress in situ were also virtually identical (206 +/− 17 kPa and 200 +/− 9 kPa, respectively). Our finding that the peak muscle stress is about one-third of maximum isometric stress at the preferred speeds is consistent with the idea that these are mechanically equivalent speeds, where the same fraction of available muscle fibres is recruited. Finding nearly identical values in two species that move in such different ways (galloping vs hopping), and have such large differences in ground reaction force exerted by each limb, suggests this may be true more generally for terrestrial vertebrates.

  • © 1988 by Company of Biologists
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Preferred speeds in terrestrial vertebrates: are they equivalent?
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Articles
Preferred speeds in terrestrial vertebrates: are they equivalent?
A. K. Perry, R. Blickhan, A. A. Biewener, N. C. Heglund, C. R. Taylor
Journal of Experimental Biology 1988 137: 207-219;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
Preferred speeds in terrestrial vertebrates: are they equivalent?
A. K. Perry, R. Blickhan, A. A. Biewener, N. C. Heglund, C. R. Taylor
Journal of Experimental Biology 1988 137: 207-219;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • The application of ground force explains the energetic cost of running backward and forward
  • Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans
  • Juvenile coho salmon locomotion and mosaic muscle are modified by 3′,3′,5′-tri-iodo-l-thyronine (T(3))
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Predicting the Future: Species Survival in a Changing World

Read our new special issue exploring the significant role of experimental biology in assessing and predicting the susceptibility or resilience of species to future, human-induced environmental change.


Adam Hardy wins the 2020 Journal of Experimental Biology Outstanding Paper Prize

Congratulations to winner Adam Hardy for his work showing that goby fins are as touch sensitive as primate fingertips. Read Adam’s paper and find out more about the 12 papers nominated for the award.


Stark trade-offs and elegant solutions in arthropod visual systems

Many elegant eye specializations that evolved in response to visual challenges continue to be discovered. A new Review by Meece et al. summarises exciting solutions evolved by insects and other arthropods in response to specific visual challenges.


Head bobbing gives pigeons a sense of perspective

Pigeons might look goofy with their head-bobbing walk, but it turns out that the ungainly head manoeuvre allows the birds to judge distance.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992