Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
Journal Articles
Mechanics, power output and efficiency of the swimming muskrat (Ondatra zibethicus)
F. E. Fish
Journal of Experimental Biology 1984 110: 183-201;
F. E. Fish
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The surface swimming of muskrats (Ondatra zibethicus Linnaeus) was studied by forcing individual animals to swim against a constant water current, of velocity ranging from 0.2 to 0.75 m s-1, in a recirculating water channel. Lateral and ventral views of the swimming muskrats were filmed simultaneously for analysis of thrust by the propulsive appendages. Drag measurements and flow visualization on dead muskrats demonstrated that these animals experience large resistive forces due to the formation of waves and a turbulent wake, because of the pressure and gravitational components which dominate the drag force. Biomechanical analysis demonstrated that thrust is mainly generated by alternating strokes of the hindfeet in the paddling mode. A general lengthening of the hindfeet and presence of lateral fringe hairs on each digit increase the surface area of the foot to produce thrust more effectively during the power phase of the stroke cycle. Increased energy loss from drag on the foot during the recovery phase is minimized by configural and temporal changes of the hindfoot. Employing the models developed by Blake (1979, 1980a,b) for paddle propulsion, it was found that as the arc through which the hindfeet were swept increased with increasing velocity the computed thrust power increased correspondingly. However, the frequency of the stroke cycle remained relatively constant across all velocities at a level of 2.5 Hz. Both mechanical and aerobic efficiencies rose to a maximum with increasing swimming velocity. The aerobic efficiency, which examined the transformation of metabolic power input to thrust power output reached a value of 0.046 at 0.75 m s-1. The mechanical efficiency expressing the relationship of the thrust power generated by the paddling hindfeet and laterally compressed tail (Fish, 1982a,b) to the total mechanical power developed by the propulsive appendages increased to a maximum of 0.33 at 0.75 m s-1. I conclude that the paddling mode of swimming in the muskrat is relatively inefficient when compared to swimming modes which maintain a nearly continuous thrust force over the entire propulsive cycle. However, the paddling mode permits the muskrat to generate propulsive forces effectively while swimming at the surface. The evolution of this mode for semi-aquatic mammals represents only a slight modification from a terrestrial type of locomotion.

  • © 1984 by Company of Biologists
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mechanics, power output and efficiency of the swimming muskrat (Ondatra zibethicus)
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Articles
Mechanics, power output and efficiency of the swimming muskrat (Ondatra zibethicus)
F. E. Fish
Journal of Experimental Biology 1984 110: 183-201;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
Mechanics, power output and efficiency of the swimming muskrat (Ondatra zibethicus)
F. E. Fish
Journal of Experimental Biology 1984 110: 183-201;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • The dynamics and scaling of force production during the tail-flip escape response of the California spiny lobster Panulirus interruptus
  • Comparison of the efficiency of rat papillary muscles during afterloaded isotonic contractions and contractions with sinusoidal length changes
  • Nitric oxide modulates cardiac performance in the heart of Anguilla anguilla
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Welcome to JEB’s new Editor Monica Daley

We are pleased to welcome Monica Daley to JEB’s Editorial team. Monica has had a long association with JEB before taking up her new role, overseeing peer review of neuromuscular physiology, terrestrial biomechanics and integrative physiology of locomotion.


In the field with Robyn Hetem

Continuing our fieldwork series, Robyn Hetem reflects on working with species ranging from aardvark to zebra, and the impact COVID-19 has had on fieldwork.


Read & Publish participation continues to grow

“It is particularly encouraging for early career researchers, as it allows them to display their research globally without the need to find costs to cover the open access option.”

Professor Fernando Montealegre-Z (University of Lincoln) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Nocturnal reef residents have deep-sea-like eyes

Fanny de Busserolles and colleagues from The University of Queensland have discovered that the eyes of nocturnal reef fish have multibank retinas, layers of photoreceptors, similar to the eyes of deep-sea fish that live in dim light conditions.


Mechanisms underlying gut microbiota–host interactions in insects

In their Review, Konstantin Schmidt and Philipp Engel summarise recent findings about the mechanisms involved in gut colonisation and the provisioning of beneficial effects in gut microbiota–insect symbiosis.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992