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Metabolite profiling of symbiont and host during thermal stress and
bleaching in a model cnidarian–dinoflagellate symbiosis
Katie E. Hillyer1, Sergey Tumanov2, Silas Villas-Bôas3 and Simon K. Davy1,*

ABSTRACT
Bleaching (dinoflagellate symbiont loss) is one of the greatest threats
facing coral reefs. The functional cnidarian–dinoflagellate symbiosis,
which forms coral reefs, is based on the bi-directional exchange of
nutrients. During thermal stress this exchange breaks down;
however, major gaps remain in our understanding of the roles of
free metabolite pools in symbiosis and homeostasis. In this study we
applied gas chromatography–mass spectrometry (GC-MS) to explore
thermally induced changes in intracellular pools of amino and non-
amino organic acids in each partner of the model sea anemone
Aiptasia sp. and its dinoflagellate symbiont. Elevated temperatures
(32°C for 6 days) resulted in symbiont photoinhibition and bleaching.
Thermal stress induced distinct changes in the metabolite profiles of
both partners, associated with alterations to central metabolism,
oxidative state, cell structure, biosynthesis and signalling. Principally,
we detected elevated pools of polyunsaturated fatty acids (PUFAs)
in the symbiont, indicative of modifications to lipogenesis/lysis,
membrane structure and nitrogen assimilation. In contrast,
reductions of multiple PUFAs were detected in host pools,
indicative of increased metabolism, peroxidation and/or reduced
translocation of these groups. Accumulations of glycolysis
intermediates were also observed in both partners, associated with
photoinhibition and downstream reductions in carbohydrate
metabolism. Correspondingly, we detected accumulations of amino
acids and intermediate groups in both partners, with roles in
gluconeogenesis and acclimation responses to oxidative stress.
These data further our understanding of cellular responses to thermal
stress in the symbiosis and generate hypotheses relating to the
secondary roles of a number of compounds in homeostasis and heat-
stress resistance.
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INTRODUCTION
The cnidarian–dinoflagellate symbiosis underpins the success of
reef-building (scleractinian) corals in nutrient-poor tropical waters
(Muscatine and Cernichiari, 1969). In symbioses, dinoflagellate
algae of the genus Symbiodinium are encapsulated within a host-
derived membrane (symbiosome), located within the cnidarian
host’s gastrodermal cells (Wakefield and Kempf, 2001). This
complex partnership (the ‘holobiont’) may be highly flexible, with a

single host associating with multiple Symbiodinium clades or sub-
clades (types), each with differing physiologies and environmental
optima (Baker, 2003). In successful symbioses, there is a complex
bi-directional exchange of both organic and inorganic compounds
(Muscatine and Hand, 1958; Davy et al., 2012). The photosynthetic
symbionts translocate organic products of carbon fixation and
nitrogen assimilation to the host, including sugars, sugar alcohols,
amino acids and lipids (Gordon and Leggat, 2010; Kopp et al.,
2015). In return, the host provides access to dissolved inorganic
nutrients (carbon, nitrogen and phosphorus) and may also exchange
host-derived amino acids, lipids and fatty acids (Wang and Douglas,
1999; Imbs et al., 2014). The functional holobiont also comprises a
specific suite of associated microbial consortia, which are also
thought to contribute to these nutritional interactions (Rohwer et al.,
2002).

The symbiosis is highly efficient and adapted to relatively wide
thermal regimes; however, seawater temperatures are rising and
continue to do so, regularly exceeding critical temperature
thresholds (Hoegh-Guldberg, 1999). This, in turn, necessitates
costly acclimation responses in the symbiont and the host, with a re-
organisation of cell metabolism and structure (Kaplan et al., 2004).
In symbiosis, this process will occur in each partner individually,
but as change is elicited in the downstream exchange of mobile
compounds between partners, it will affect the holobiont as a whole
(Clark and Jensen, 1982). Acclimation responses will vary
according to the holobiont genotype and phenotype; however,
they include enzymatic and non-enzymatic antioxidants,
photoprotective compounds such as fluorescent proteins and
accessory pigments, heat shock proteins, compatible solutes,
and structural modifications to maintain cell and organelle
stability and function (Lesser, 2006; Baird et al., 2009). Further to
their roles in central metabolism, free metabolite pools will function
in the de novo synthesis of these protective compounds. In addition,
they have direct roles as intracellular antioxidants, chelating agents,
compatible solutes and cellular signals (Guy et al., 2008; Grüning
et al., 2010). Even with costly acclimation responses in place, where
elevated temperatures are prolonged and/or severe, thermal stress
will lead eventually to dysfunction of the symbiosis, specifically,
photoinhibition in the symbiont, the excess production of reactive
oxygen species (ROS), and eventually symbiont loss and
breakdown, via bleaching (Weis, 2008).

Despite the importance of coral reefs and bleak projections for
their future under climate change, major gaps remain in our
understanding of how this dynamic and complex symbiosis is
affected by high temperature stress and bleaching (Weis, 2008; Davy
et al., 2012). In particular, data elucidating changes to mobile
compound exchange and downstream pathways in the holobiont are
lacking. Less still is known of the secondary roles of many primary
metabolites in cellular acclimation, or how these compounds may
serve to alter resistance to stress. Metabolomics is a widely used
approach for the study of abiotic stressors within clinical research,Received 22 July 2015; Accepted 25 November 2015
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and increasingly in environmental monitoring (Viant, 2008;
Lankadurai et al., 2013). Metabolomics refers to the analysis of
lowmolecular weight metabolites within a cell, tissue or biofluid (the
‘metabolome’) (Viant, 2007). The metabolome of an organism is a
downstream product of genotype, phenotype and environmental
drivers (Fancy and Rumpel, 2008; Spann et al., 2011). Given a
variable of interest, it is therefore possible to detect fine-scale change
in a rapid and quantitative manner. Furthermore, by calculating
accompanying pathway rate changes, insight can also be gained into
wider downstream physiological effects. At the simplest level, one
such method for estimating pathway turnover involves the
comparison of metabolite abundance and role in particular
pathways, producing a hypothetical estimate of pathway activity,
which may then be compared between conditions (Aggio et al.,
2010). Because of the diversity of the metabolome, no one method is
currently capable of capturing all metabolite classes, due to their
differing characteristics (Viant, 2008). However, with the application
of gas chromatography–mass spectrometry (GC-MS) metabolite
profiling, it is possible to simultaneously analyse a relatively large
number of metabolite groups in a high throughput, repeatable,
sensitive and cost-effective manner (Villas-Bôas et al., 2005).
This study applied GC-MS metabolite profiling and pathway

activity analysis to the tropical sea anemone Aiptasia sp. and its
in hospite homologous symbiont (Symbiodinium minutum, ITS2
type B1) (Starzak et al., 2014). This anemone is a widely used
model system for the study of the cnidarian–dinoflagellate
symbiosis (Weis, 2008). The main aim was to investigate heat-
stress-induced modifications to the intracellular pools of both
partners. Our methods were therefore optimised to focus on pools of
amino and non-amino organic acids (in particular, fatty acids).
These compounds not only play important roles in the functional
metabolism of the holobiont, but have also been previously shown
to respond to heat treatment, principally in the maintenance of
homeostasis, cell structure, cell signalling and cell death (Díaz-
Almeyda et al., 2011; Imbs and Yakovleva, 2012; Leal et al., 2013).

MATERIALS AND METHODS
Specimens of the sea anemone Aiptasia sp. were maintained in the
laboratory in 1 μm filtered seawater (FSW) at 25°C, with light
provided by AQUA-GLO T8 fluorescent bulbs at ≈95 μmol
quanta m−2 s−1 (12 h:12 h light:dark cycle). Anemones were fed
twice a week with freshly hatched Artemia sp. nauplii. Prior to the
experiment, anemones were rinsed repeatedly with FSW to remove

external contaminants. Individuals were acclimated and starved in
25 litre aquaria (light regime as above) for 7 days prior to sampling,
to ensure that any Artemia nauplii had been digested and expelled.
Following acclimation, the treatment aquaria were ramped to
32±0.4°C over a period of 48 h (≈1°C 10 h−1). Once the target
temperature was attained, it was maintained for 6 days for the
treatment group. A control group was maintained at 25±0.5°C.

Dark-adapted maximum quantum yield of photosystem II (Fv/
Fm) was measured with a diving pulse amplitude modulated (PAM)
fluorometer (Walz, Effeltrich, Germany), following a 30 min dark
adaptation at the end of the daily light cycle. PAM settings were
maintained over the course of the experiment at: measuring light 4,
saturation intensity 4, saturation width 0.6 s, gain 2 and damping
2. Measurements were taken a standard distance of 5 mm from each
sample. Mean estimates with standard error (s.e.m.) were calculated
based on single measurements from 10 individuals per treatment at
each time point. These same individuals were maintained for daily
measurements over the course of the experiment and were not
sampled for metabolite profiles.

Sampling for metabolite profiling was undertaken at day 0 (pre-
heat ramp) and after 6 days of heat treatment exposure. Three
replicate samples were taken at each time point for each treatment.
Each individual sample comprised a total of six individuals, to
ensure sufficient biomass for metabolite identification (n=3×6
anemones per time point and treatment). Individuals for metabolite
analysis were immediately quenched by snap-freezing in liquid
nitrogen, and were transferred to a −80°C freezer for storage.

Host and Symbiodinium separation
Frozen individuals were pooled into single samples and ground with
a pestle and mortar, which was chilled with the addition of liquid
nitrogen. Once homogenised, 2.4 ml chilled MilliQ water (at 4°C)
was added, the sample was thoroughly vortexed, and a 400 μl
aliquot was taken for host protein, Symbiodinium cell counts and
chlorophyll a analysis. The remaining homogenate was then
centrifuged at 1150 g for 5 min at 4°C to pellet the algal symbionts.

The supernatant containing the host fraction was removed, snap-
frozen in liquid nitrogen and freeze-dried overnight. The algal pellet
was re-suspended in 3 ml chilled MilliQ water and re-centrifuged at
1150 g for 5 min at 4°C, and the supernatant discarded. This
washing procedure was repeated twice and the resulting algal pellet
was freeze-dried overnight. It should be noted that MilliQ water
alone was employed for separation and purification phases because
of the interaction of buffer precipitates (phosphates) and antifreezes
(such as glycerol and ethylene glycol) with the metabolites of
interest (K.E.H. and J. Matthews, unpublished data).

Protein quantification, cell counts and chlorophyll a
Symbiodinium cell densities were quantified using Improved
Neubauer haemocytometer counts (Boeco, Germany), with a
minimum of six replicate cell counts per sample (to a confidence
interval below 10%). Cell density was normalised to soluble protein
content, which was assessed by the Bradford assay (Bradford, 1976)
carried out on the supernatant of centrifuged (16,000 g for 20 min)
host fractions (triplicate measurements). Symbiont chlorophyll a
content was quantified by dimethylformamide extraction (Moran,
1982) and measured with an ELISA microplate reader (Enspire®

2300, Perkin-Elmer,Waltham,MA,USA) (triplicatemeasurements).

Extraction
Once dry, 1 ml 50% cold MeOH (at −20°C) was added to each of
the samples, which were also spiked with 20 μl of the internal

List of symbols and abbreviations
CoA coenzyme A
FC fold change
Fd ferredoxin
FSW filtered seawater
Fv/Fm maximum quantum yield of photosystem II
GC-MS gas chromatography–mass spectrometry
MCF methyl chloroformate
MUFA monounsaturated fatty acid
NAD nicotinamide adenine dinucleotide
NADP/H nicotinamide adenine dinucleotide phosphate
PAM pulse amplitude modulated
PAPi pathway activity profiling
PCA principal components analysis
PUFA polyunsaturated fatty acid
ROS reactive oxygen species
SFA saturated fatty acid
TCA tricarboxylic acid
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standard d4-alanine (at 10 mmol l−1). Methanol-chloroform-washed
aluminium beads were added and the samples were vortexed for
1 min, frozen and re-vortexed for a further 1 min. This process was
repeated twice for the symbiont samples, to ensure that the cells
were fully lysed, identifiable by the orange colour of the extract.
Samples were then centrifuged at 3220 g for 6 min at −9°C, and the
supernatants were collected and stored on dry ice. The extraction
was then repeated with the further addition of 1 ml 80% cold MeOH
(at −20°C) to the pellet. This second extract was then combined
with the first and the pooled sample was freeze-dried overnight. The
algal pellet and host cell debris were retained and dried in a drying
oven at 100°C, to a constant dry mass.

MCF derivatisation
Derivatisation was via methyl chloroformate (MCF) with the
method adapted from Smart et al. (2010). When completely dry,
symbiont samples were re-suspended in 200 μl NaOH (1 mol l−1)
and transferred to silanised glass tubes (CTS-1275, Thermo Fisher
Scientific, USA). After this, a 50 μl aliquot was taken from each
sample to produce a pooled sample. To the remaining sample,
167 μl MeOH and 34 μl pyridine were added, followed by 20 μl
MCF, and the solution was vortexed for 30 s. A further 20 μl of
MCF was then immediately added and the sample was vortexed for
another 30 s. Next, 400 μl of chloroform was added to each sample
and the mixture was vortexed for 10 s. Finally, 400 μl of sodium
bicarbonate (50 mmol l−1) was added and the samples were
vortexed for another 10 s. Derivatisation of the host material and
production of a pooled sample were as for the symbiont, but all
derivatisation volumes were doubled, except in the case of
chloroform. Samples were then centrifuged at 1150 g for 5 min
and the upper aqueous phase was discarded. Any remaining water
was then removed from the sample with the addition of sodium
sulphate. The remaining extract was then transferred to GC vials for
GC-MS analysis.
An isotope-labelled derivative for each metabolite found in the

sample was prepared via chemical derivatisation of the pooled
sample (algae/host) using isotope-labelled derivatising reagents,
namely deuterium-labelled methyl chloroformate (d-MCF)
(MT001, Omics, Auckland, New Zealand) and deuterium-labelled
methanol (methanol-d4). A 50 μl aliquot of the relevant d-MCF-
derivatised pooled sample (symbiont/host) was then spiked into
each of the MCF-derivatised samples prior to GC-MS analysis.

GC-MS analysis
GC-MS was used for identification, semi-quantitation and absolute
quantitation of metabolites. This involved use of a Thermo
Scientific Trace GC Ultra gas chromatograph coupled to an ISQ
mass spectrometer with a programmable temperature vaporising
injector.
GC-MS instrument parameters were based on Smart et al. (2010).

Briefly, 1 μl of sample was injected using a CTC PAL autosampler
into a Siltek™ 2 mm ID straight unpacked inlet liner. The injector
was set to 260°C, constant temperature splitless mode with a
pressure surge of 180 kPa for 1 min, and column flow of
1.0 ml min−1 in constant flow mode. Purge flow was set to
25 ml min−1, 1.2 min after injection.
The column was a fused silica ZB-1701 30 m, with 0.25 mm ID

and 0.15 µm film thickness (86% dimethylpolysiloxane, 14%
cyanopropylphenyl, Phenomenex). Carrier gas was ultra-high
purity grade helium (99.9999%, BOC). GC oven temperature
programming started isothermally at 45°C for 2 min, then: increased
9°C min−1 to 180°C, held 5 min; increased 40°C min−1 to 220°C,

held 5 min; increased 40°C min−1 to 240°C, held 11.5 min; and
increased 40°C min−1 to 280°C, held 2 min. The transfer line to the
mass selective detector was maintained at 250°C, and the source at
230°C. The detector was turned on 5.5 min into the run under
electron-impact ionisation mode, at 70 eV electron energy, with the
electron multiplier set with no additional voltage relative to the
autotune value. Solvent blanks were run for every 10–12 samples to
monitor instrument carryover. Mass spectra were acquired in scan
mode from 38 to 550 AMU, at a rate of 5120 AMU s−1.

Data analysis and validation
Metabolite data extraction and analysis were undertaken based
on the protocol described in Smart et al. (2010) with the use
of Automated Mass Spectral Deconvolution and Identification
System (AMDIS) (http://chemdata.nist.gov/mass-spc/amdis/) and R
software, including the packages Metab, Metab-Q and Pathway
Activity Profiling (PAPi) (Aggio et al., 2010; Tumanov et al.,
2015b), and the software package MetaboAnalyst (Xia et al., 2009,
2012). Compound identification was based on an in-house library of
MS spectra. Derivative peak areas were used to semi-quantify the
concentrations of individual metabolites in the comparative data set.
The comparative data were then normalised to the final area of the
internal standard (d4-alanine) and sample fraction dry mass. For
quantitative data, Metab-Q was used to extract abundances of
analytes from chromatograms. Metab-Q is in-house software
written in the R environment (https://www.r-project.org) that
generates a .csv file with individual analyte abundances using an
AMDIS report. This script requires the XCMS library (Smith et al.,
2006) and can process data files in NetCDF and mzXML formats.
Data were then normalised to sample dry mass. Metab-Q is a free
software package that can be downloaded from the Metabolomics
Laboratory webpage (The University of Auckland, New Zealand;
http://metabolomics.auckland.ac.nz/index.php/projects/26).

Data were tested for normality and homogeneity, and transformed
where appropriate. IBM SPSS Statistics (v20) was used for
both repeated-measures ANOVA (RMANOVA) and ANOVA.
RMANOVAwas used to test for differences in maximum quantum
yields between treatment groups and days (repeat measurements
were from the same individuals, which were set aside in each
treatment). ANOVA was used to test for differences in heat stress
indicators between treatments and sampling days. Statistical
significance between the abundance of metabolite treatment means
was determined by univariate tests (t-test) in MetaboAnalyst.
Differences were considered significant at the P<0.05 probability
level. Fold change analysis was used to compare the absolute value
change between group means, before data normalisation was
applied. Principal components analysis (PCA) using the
normalised, log-transformed and auto-scaled metabolite data was
undertaken with MetaboAnalyst. PCA was used to summarise the
multivariate metabolite data, capturing the variables that explained
the greatest variation [principal components (PC)] in each treatment
group. The key-contributing metabolites, as determined by their
contribution to the PCA plots, can be identified by their loadings
values, as summarised in the corresponding loadings plots.

Pathway activity analysis using the PAPi package was undertaken
to compare activities using the normalised and transformed
metabolite data following the methods described in Aggio et al.
(2010). Briefly, using the normalised abundance data for each
treatment at day 6 as input, the PAPi package calculates activity
scores of individual pathways from the Kyoto Encyclopedia of Gene
and Genomes (KEGG) database. These activity scores are based on
the relative changes in compounds (control versus treatment)
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associated with each pathway of interest. This algorithm is based on
two main assumptions: (1) if a given pathway is active in a cell or
organism, more intermediates associated with that pathway will be
detected; and (2) during high pathway activity and high turnover, the
abundance of associated intermediates will be low. In contrast,
during low pathway activity and low turnover, abundance of any
associated intermediates will be high (Aggio et al., 2010). The
resulting activity score therefore serves as an indicator of the
likelihood that a pathway is active within a cell, or organism under a
given condition, without the requirement for absolute quantitation
such as during more detailed flux analysis. Resulting pathway
activity scores were inverted tomake interpretation in plotted figures
more intuitive, i.e. an increase in activity score representing an
increase in the predicted pathway activity. Independent sample
t-tests (two-tailed) were used to test for differences between activity
scores between treatment groups, with equal variance assumed.

RESULTS
A total of 50 compounds comprising largely amino and non-amino
organic acids were identified via GC-MS analysis of the polar and
semi-polar extracts of the dinoflagellate (symbiont) and cnidarian
(host) fractions. These compounds consisted of 18 amino acids, 11
organic acids and amides, three monounsaturated fatty acids
(MUFAs), 12 polyunsaturated fatty acids (PUFAs), five saturated
fatty acids (SFAs) and one peptide (Table S1).

Ambient metabolite profiles
Under ambient conditions, symbiont and host profiles differed to a
high degree (PC1, 63.1%) in the relative composition of their free
metabolite pools (Fig. 1, Table S2). Symbiont profiles were largely
composed of a mix of SFAs, MUFA and PUFAs. The most
abundant of these – palmitic acid (C16_0), oleic acid (C18_1n)
and 11,14,17-eicosatrienoic acid (C20_3n) – were present at
concentrations of between 880 and 640 pg μg−1 symbiont dry
mass. Those distinctive of the symbiont profile included the PUFAs
11,14,17-eicosatrienoic acid (C20_3n), gamma-linolenic acid
(C18_3n), 13,16-docosadienoic acid (C22_2n) and 11,14-
eicosadienoic acid (C20_2n), and the SFAs myristic acid (C14_0)
and dodecanoic acid (C12_0) (Fig. 1).

Host profiles were dominated by a more diverse range of
metabolite groups, including SFAs, MUFAs, organic acids and
amino acids (Fig. 1, Table S4). The most abundant metabolite was
the organic acid citrate, at 3270 pg μg−1 host dry mass, followed by
the amino acid glutamic acid, the SFA C16_0 and the tripeptide
glutathione, which ranged between 1800 and 900 pg μg−1 host dry
mass. Characteristic metabolites of the host profile included the
tripeptide glutathione; the amino acids isoleucine, methionine,
cysteine and serine; and the organic acids itaconic acid and citric
acid (Fig. 1).

Heat stress indicators
Exposure to 32°C for 6 days resulted in significant declines in Fv/
Fm (Fig. S1), which differed with treatment (RMANOVA,
time×temperature F6,108=12.93, P<0.001). After 6 days, Fv/Fm

within the treatment group declined ca. 25% to 0.49±0.04,
compared with 0.64±0.02 in the control.

Symbiodinium cell density also declined significantly in the heat
treatment group (one-way ANOVA, F3,20=23.283, P<0.001).
Elevated temperature treatment caused a 69% reduction in
symbiont density after 6 days (from 4.79×106±3.42×105 to
1.46×106±1.55×105 cells mg−1 protein), while there was no
significant decline in the control (Tukey’s HSD post hoc,
P=0.992). Chlorophyll a concentration per cell, however,
remained unaffected by temperature, with values ranging from
approximately 0.82 to 1.21 pg chl a cell−1 (one-way ANOVA,
F3,20=1.295, P=0.304).

Heat treatment metabolite profiles
For both symbiont and host, heat treatment caused a shift in
metabolite profile, as indicated by the clear separation of the 6-day
heat treatment groups within the PCA score plots (Fig. 2). For the
symbiont, the heat treatment group was separated along the negative
axes of both PC1 and PC2 (PC1, 72.3%, PC2, 11.7%; Fig. 2). For
the host fraction, the greatest variance in the data set was accounted
for by within-group variability (PC1, 52.7%); heat treatment
explained a second level of variance in the data set (PC2, 16.4%;
Fig. 2). Metabolite profiles of the 6-day controls and 0-day pre-heat
treatment groups closely resembled one another, as reflected in their
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Fig. 1. Characteristics of freemetabolite pools in symbiont and host under ambient conditions. Principal components analysis (PCA) scores plot, with 95%
confidence intervals (left) and loadings plot (right) of metabolite profile data for dinoflagellate symbiont (symbiont) and cnidarian host samples (host) under
ambient conditions.
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similar PC scores and the spatial overlap of these groups in the PCA
score plots.

Heat-responsive metabolites in the symbiont
The metabolites contributing the most to the heat treatment effect in
the symbiont metabolite pools are summarised in Fig. 3. Briefly,
they include the organic acid succinate and the amino acids valine,
norvaline, threonine and methionine (Fig. 3). Those typical of the
control included the SFAs myristic acid (C14_0) and dodecanoic
acid (C12_0).
With respect to quantitative data of individual compounds, we

detected significant concentration increases and fold changes for
multiple metabolite groups (Table S3). Notably, the organic acids
lactate, fumarate, citrate and succinate, the amino acids glycine,
beta-alanine, threonine, valine, norvaline and methionine, and the
PUFAs alpha- and gamma-linolenic acid (C18_3n) and 11,14,17-
eicosatrienoic acid (C20_3n) (Fig. 4).
As a result of these relative alterations in pools between ambient and

heat-stress groups, we estimated multiple activity changes to

downstream networks, especially those associated with central
metabolism, fatty acid metabolism and cellular homeostasis (Fig. 5).
Principally, we estimated activity reductions for pathways associated
with glycolysis, oxidative phosphorylation and the tricarboxylic acid
(TCA) cycle. Coupled to thesemodifications to centralmetabolism,we
estimated declines in the activity of biosynthesis pathways for a
numberof amino acids and fatty acids.We also estimated a reduction in
the on-going metabolism of a number of amino acids and cellular
antioxidants, including glutathione and nicotinamide, associated with
their accumulation during thermal stress.

Heat-responsive metabolites in the host
Key metabolites that contributed to the metabolite profile of
thermally stressed anemone tissues included the SFA dodecanoic
acid (C12_0), the nucleotide precursor nicotinamide, the tripeptide
glutathione, and the organic acids lactate and fumarate (Fig. 3).
Similarly, we detected significant concentration increases and fold
changes for the same compounds, in addition to the amino acids
alanine and glutamic acid (Table S4).
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Alterations to pathway turnover were estimated for a number of
central and homeostatic networks as a result of temperature
treatment (Fig. 5). Briefly, we estimated relative increases in
pathways linked to the generation of energy via gluconeogenesis,
namely the TCA cycle, coenzyme A (CoA) biosynthesis and
oxidative phosphorylation, coupled to declines in glycolysis and
pyruvate metabolism. These alterations coincided with increased
activity of the metabolism of a number of fatty acids and amino
acids. We also detected increased activity of networks associated
with lipid signalling pathways, namely, those associated with the
oxidation of the fatty acids arachidonic acid (C20_4) and linoleic
acid (C18_2). Correspondingly, we estimated reduced metabolism
of cellular antioxidants, including glutathione and thiol-containing
amino acids, associated with their accumulation with thermal stress.

DISCUSSION
This study characterised metabolite profiles, in both partners of a
model cnidarian–dinoflagellate symbiosis, during ambient
conditions and following exposure to elevated temperature. Heat
treatment (32°C for 6 days) resulted in thermal stress and
breakdown of the symbiosis (bleaching). We observed marked,
thermally induced changes in the pools of intracellular free

metabolites in both partners. Associated with these modifications,
we identified alterations to the activities of central metabolic
pathways, such as glycolysis and gluconeogenesis, in addition to
those associated with nitrogen assimilation, biosynthesis, cellular
homeostasis and cell signalling (Fig. 6).

Changes to specific metabolite groups and pathways in
response to heat stress
Fatty acids
Fatty acids and lipids are synthesised de novo by ligation of acetyl-
CoA, via the action of elongase enzymes (Tumanov et al., 2015a).
Synthesis pathways vary between species, and autotrophic and
heterotrophic organisms have different abilities to produce specific
fatty acid groups (Dunn et al., 2012; Leal et al., 2013). Fatty acids
and lipids play major roles in the functional cnidarian–
dinoflagellate symbiosis, acting directly in the primary
metabolism of both partners and mobile compound exchange
between partners (Dunn et al., 2012; Imbs et al., 2014; Kopp et al.,
2015). As major energy stores in the dinoflagellate symbiont, lipid
and fatty acid pools are also indicative of carbon to nitrogen (C:N)
ratios, cell proliferation and the status of on-going nitrogen
assimilation (Wang et al., 2013; Jiang et al., 2014) (Fig. 6). Free
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fatty acid pools also function in cellular homeostasis, with highly
conserved roles in membrane structure, function and cell signalling
(Díaz-Almeyda et al., 2011; Dunn et al., 2012). Correspondingly, in
the present study we detected a high diversity and abundance of free
SFAs, MUFAs and PUFAs in the free fatty acid pools of both
partners, in ambient and heat-stressed conditions. Under ambient
conditions, many of these compounds were found at relatively high
abundances in both partners (C16_0, C18_0, C18_1), although the
relative contributions of individual compounds differed in each
partner (e.g. C22_2:C22_5 ratio). We also detected multiple fatty
acids (primarily DHA, C22_6n) in host pools that are characteristic
of the mobile products of the dinoflagellate symbionts (Dunn et al.,

2012; Kneeland et al., 2013), and vice versa (DPA, C22_5n) (Imbs
et al., 2014).

Photoinhibition of the symbiont, as indicated by a large reduction
(ca. 25%) in Fv/Fm, will result in a net reduction in the generation of
cellular energy (ATP and NADPH) and an increase in ROS
production (Smith et al., 2005). This will impact the fatty acid pools
of both symbiont and host in a number of complex ways.

For example, there will be a shift in metabolic modes to those that
generate, rather than consume, ATP. One such important
mechanism for energy generation is gluconeogenesis, where
energy stores are catabolised to produce ATP. Lipids are broken
down via beta-oxidation to produce acetyl-CoA, which is in turn fed
into the TCA cycle, generating ATP (Grottoli and Rodrigues, 2011;
Imbs and Yakovleva, 2012) (see ‘Organic acids, intermediates and
antioxidants’, below). Although we did not analyse total lipids,
which comprise the entirety of lipid stores, free pools of polar and
semi-polar fatty acids comprise a major fraction of these stores
(Imbs and Yakovleva, 2012; Jiang et al., 2014). Associated with
photoinhibition and this energy deficit, we detected a negative trend
in pools of a number of SFAs in the symbiont (C12_0 and C14_0).
These relative reductions may be indicative of increased turnover
and/or a decline in fatty acid elongation and lipogenesis in the heat-
stressed symbiont.

A decline in de novo lipogenesis pathways, which consume ATP,
and a reduction in downstream translocation of these mobile
products to the host would also be expected under thermal stress and
photoinhibition (Papina et al., 2007; Imbs and Yakovleva, 2012)
(Fig. 6). Correspondingly, we detected accumulations of multiple
long-chain PUFA intermediates in symbiont FA pools.
Concomitantly, in host pools we detected reductions of multiple
long-chain PUFAs, which are considered characteristic of
symbiont-derived mobile products (such as DHA) (Papina et al.,
2003; Kneeland et al., 2013). In the host we also estimated a trend of
increased activity of the TCA cycle and the production of acetyl-
CoA, consistent with a decline in mobile product translocation and
an increase in the activity of this energy-generating network (Papina
et al., 2007; Imbs and Yakovleva, 2012). An additional explanation
for the observed accumulations in symbiont pools, is translocation
of host-derived PUFAs (Imbs et al., 2014). Host-derived
compounds include the long-chain PUFAs DPA (C22_5n) and
linoleic acid (C18_2n), and the SFA arachidic acid (C20_0), all of
which were also detected in symbiont pools in the present study.
Interestingly, symbiont pools of DPA were also elevated with
thermal stress, indicative of a reduction in its metabolism and/or
increased translocation of this compound during thermal stress.

A reduction in photosynthesis will also necessitate an alternative
sink for electrons in the chloroplasts of the dinoflagellate; the major
mechanism in Symbiodinium is via the Mehler reaction (Reynolds
et al., 2008). This pathway, in turn, produces high levels of cellular
ROS, in the form of relatively persistent hydrogen peroxide, which
can result in damage to the lipid bilayer of cell membranes
(Tchernov et al., 2004). PUFAs in particular are considered
sensitive to both peroxidation and photo-oxidation (Tchernov
et al., 2004; Papina et al., 2007). During prolonged oxidative stress,
where antioxidant responses are overwhelmed, there will be
increased oxidation of PUFAs to oxylipins, which are highly
unstable and result in further damage (Gill and Tuteja, 2010). As a
result, many oxylipins function as conserved messenger molecules
in stress signalling, programmed cell death and defence responses
(Savchenko et al., 2010). More specifically, the eicosanoid pathway
(of which C20_4 is a major substrate) functions in this stress-
signalling cascade, a process also recently described in the soft coral
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Fig. 4. Free fatty acid concentrations in symbiont and host pools under
ambient conditions and thermal stress. Concentration of individual
compounds in (A) symbiont and (B) host free fatty acid pools per µg dry mass
during ambient conditions (25°C) and following exposure to thermal stress
(32°C for 6 days) from the anemone Aiptasia sp. t-test concentration×treatment.
Asterisks indicate a significant difference between treatments (*P<0.05).
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Capnella imbricata (Lõhelaid et al., 2015). The observed reductions
of C20 PUFAs in host pools can therefore be considered indicative
of prolonged oxidative stress and highlight the possibility that
oxylipin-based signalling cascades may also operate in Aiptasia.
Increased saturation of the cell lipid bilayer functions in thermal

acclimation directly and indirectly, by increasing stability and
protecting it against damage by ROS (Pearcy, 1978; Tchernov et al.,
2004; Papina et al., 2007). We detected a positive trend in the pools
of the major SFAs C16_0 and C18_0, in addition to C18_1 in both
partners. However, with our methods it was not possible to establish
whether these changes were associated with modifications to cell
membranes, or were simply a reflection of altered fatty acid
metabolism, or a combination of the two. However, increasing
membrane saturation is energetically costly, consuming ATP to
break and re-form lipid structures; it may also be dependent on cell
type (Díaz-Almeyda et al., 2011). In contrast, relatively thermally
resistant Symbiodinium types may actively increase pools of PUFAs
(Díaz-Almeyda et al., 2011). As the process of fatty acid
desaturation is also in itself an aerobic reaction, desaturation,
elongation and isomerisation may simultaneously reduce cellular
oxidative stress, increase melting points and reduce peroxidation,
thereby providing an additional mechanism for membrane

stabilisation (Guerzoni et al., 2001; Díaz-Almeyda et al., 2011).
However, as PUFAs are in themselves susceptible to peroxidation
by ROS, this response will only be effective as long as antioxidant
responses are maintained. In agreement with Díaz-Almeyda et al.
(2011), we detected elevated pools of multiple PUFAs in the
symbiont following exposure to thermal stress. The homologous
Symbiodinium type in the present study (B1) is considered
moderately robust to thermal and oxidative stress (Wietheger
et al., 2015), and a similar mechanism may therefore operate in this
symbiont. This process of PUFA accumulation is also common in
dinoflagellates under nitrogen limitation as C:N ratios become
elevated, and may therefore also be indicative of reductions in
nitrogen assimilation (see ‘Amino acids’, below) (Jiang et al., 2014;
Wang et al., 2015).

Amino acids
Amino acid pools not only function in biosynthesis, growth and
respiration via gluconeogenesis, but their exchange as mobile
compounds is also thought to play a role in maintaining the
functional symbiosis (Livingstone, 1991; Wang and Douglas, 1999;
Butterfield et al., 2013). Inorganic nitrogen is directly assimilated in
both symbiont and host from ammonium and nitrate (Pernice et al.,
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2012). However, nitrate must first be reduced by nitrate reductase, a
process using reduced ferredoxins (Fd) from the photosynthetic
transport chain, or NAD(P)H (in non-photosynthetic organisms)

(Dagenais-Bellefeuille and Morse, 2013). Ammonium is then
assimilated via the glutamine synthetase/glutamine:2-oxoglutarate
aminotransferase cycle (Pernice et al., 2012). In this cycle,
ammonium is added to glutamine (Gln) to produce glutamate
(Glu), consuming ATP, Glu is then reduced back to Gln with either
reduced-Fd or NAD(P)H (Dagenais-Bellefeuille and Morse, 2013).
The abundance of Glu and Gln can therefore serve as a sensitive
indicator of nitrogen assimilation in the symbiosis (Pernice et al.,
2012) (Fig. 6). The capacity to assimilate nitrogen in this way is
present in both symbiont and host, but the process is much more
rapid in the dinoflagellate (Swanson and Hoegh-Guldberg, 1998;
Pernice et al., 2012). Following assimilation by the symbiont,
synthesised amino acids will therefore have a number of fates, where
they may be: (1) used in the production of other amino acids and
proteins; (2) directly metabolised via the TCA cycle (see ‘Organic
acids, intermediates and antioxidants’, below); (3) translocated to
the host; or (4) metabolised in the purine pathway (Wang and
Douglas, 1999; Pernice et al., 2012).

Thermal stress resulted in a number of changes to the amino acid
pools of both symbiont and host, reflecting modifications to the
activity of nitrogen assimilation and the downstream fate of
assimilated compounds. Firstly, Glu accumulated in symbiont
pools (and to a lesser extent in pools of the host). As nitrogen
assimilation consumes ATP and requires reduced-Fd,
photoinhibition is likely to result in a decline in the activity of
this process, with the accumulation of the non-reduced intermediate
Glu in symbiont pools as a result. Secondly, we also detected
accumulations in symbiont pools of numerous other amino acid
groups; these included isoleucine and valine, which, under
functional conditions, are thought to be synthesised by the
symbiont and translocated to the host (Wang and Douglas, 1999).
Accumulations of these amino acids are therefore once again likely
to be indicative of a reduction in the activity of ATP-consuming
biosynthesis pathways, such as transamination and protein synthesis
and of declines in downstream mobile product translocation to the
host, coupled to increases in ATP-generating pathways such as the
breakdown of proteins during gluconeogenesis (Wang and Douglas,
1998; Whitehead and Douglas, 2003).

Of note was the accumulation of thiols, or the sulphur-containing
amino acids cysteine and methionine, in the symbiont pools with
heat stress. This group has a number of highly conserved secondary
functions, which include acting as ROS scavengers and redox
sensors (Mayer et al., 1990), and may therefore perform a similar
function in the symbiont under thermal and oxidative stress.

Organic acids, intermediates and antioxidants
Organic acids and pathway intermediates play essential roles in
central metabolic pathways, including the TCA cycle, glycolysis,
oxidative phosphorylation, the pentose phosphate pathway and
gluconeogenesis (Livingstone, 1991; Ganot et al., 2011;
Butterfield et al., 2013). They also have important functions in
the production of co-enzymes and antioxidants, and as signalling
molecules (Krüger et al., 2011). Heat treatment induced changes in
these pools in both partners of the symbiosis. Most notably, we
observed increases of intermediates linked principally to glycolytic
pathways and pyruvate metabolism, in both symbiont and host. In
glycolysis, glucose is broken down into pyruvate, which is
eventually fed into the TCA cycle to generate energy (ATP)
(Fernie et al., 2004). In the symbiont, reductions in pathway
activities linked to modes of carbohydrate metabolism are likely to
reflect the downstream results of photoinhibition (Lesser, 1997).
Declines in the host would further imply that, under heat stress,
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is displayed in the chloroplast.
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carbohydrate pools were also diminished, most likely because of
reduced translocation from the symbiont (Clark and Jensen, 1982;
Loram et al., 2007) (Fig. 6).
However, in the host fraction we also detected reductions in pools

of intermediates linked to other aspects of central metabolism,
namely the TCA cycle and oxidative phosphorylation, suggesting
increased turnover of these networks. These shifts are likely due
to the ongoing energetic costs associated with maintaining
homeostasis under elevated temperature, such as modifications to
the structure of cell membranes, which in turn necessitate the
generation of energy from alternate pathway modes (as discussed
above) (Coles and Jokiel, 1977; Clark and Jensen, 1982), such as via
gluconeogenesis and beta-oxidation, in the breakdown of proteins
and lipids (Lehnert et al., 2014).
Also of note was the accumulation of nicotinamide in both

partners. This compound is the precursor to the essential coenzymes
nicotinamide adenine dinucleotide (NAD) and nicotinamide
adenine dinucleotide phosphate (NADP). These coenzymes
facilitate many oxidation and reduction reactions in living cells,
which include linking the TCA cycle and oxidative phosphorylation
(Berglund and Ohlsson, 1995). In Symbiodinium, as in other
primary producers, NADP+ is a major acceptor of electrons in
photosystem I, which in turn reduces the production of ROS
(Takahashi and Murata, 2008). In higher plants, nicotinamide has
been identified as a signal molecule of DNA damage and oxidative
stress, which facilitates a number of defence-related metabolic
reactions (Berglund, 1994; Berglund and Ohlsson, 1995). A similar
defence and signalling mechanism may also function in the
cnidarian–dinoflagellate symbiosis, though this awaits
confirmation. In addition, pools of the antioxidant compound
glutathione were elevated in both partners. Glutathione is a
tripeptide antioxidant that serves as an important electron donor
during oxidative stress in Symbiodinium (Lesser, 2006; Krueger
et al., 2014) and in the cnidarian host (Downs et al., 2002; Desalvo
et al., 2008; Sunagawa et al., 2008), consistent with the findings of
the present study.

Conclusions
Free metabolite pools and mobile compound exchange between
symbiotic partners are essential to the functional cnidarian–
dinoflagellate symbiosis. Primary metabolites function directly in
central metabolism, and in cellular acclimation and homeostasis.
Prolonged exposure to elevated temperatures above critical
temperature thresholds results in symbiont photoinhibition,
bleaching and distinct changes in the metabolite profiles of both
symbiont and host. These modifications are associated with declines
in carbon fixation, altered metabolic mode, declines in mobile
product translocation, and acclimation responses to thermal and
oxidative stress. These data provide further insight into the differing
cellular responses of symbiont and host to these abiotic stressors
during bleaching in a model system for reef-building corals. The
outputs of this study also highlight a number of gaps in knowledge
that warrant further study, for instance, the roles of free metabolite
pools in stress-signalling cascades and signal transduction, within
and between partners, are largely undescribed in the symbiosis. This
study also highlights the need for further investigation into the
central metabolic networks of both partners of the symbiosis, where
major gaps still remain.

The application of metabolomics to coral reef studies
Clearly a major strength of metabolomics-based techniques lies in
the capacity to simultaneously detect subtle changes in a large

variety of small compounds, with little a priori knowledge of the
metabolite pools under investigation. As these pools have important
and conserved roles in respiration, growth, cellular homeostasis and
signalling, quantitative insight can be gained into the activity of
these networks. However, in many cases direct evidence from the
cnidarian–dinoflagellate symbiosis is still lacking and further
targeted studies are therefore required to test the roles of many
compounds in the cellular responses of both partners. For instance, a
more in-depth understanding of the cell-signalling network is
essential if we are to better understand how the holobiont detects,
communicates and responds to stress. These data may also prove
useful in the development of metabolite markers of thermal and
other abiotic stressors that can be used for monitoring of the
symbiosis and of coral reef systems. Further studies that apply high-
resolution visualisation of metabolite pools, such as nanoscale
secondary ion mass spectrometry (NanoSIMS), coupled with
stable isotope tracers will serve to provide further insight into the
potential roles of free metabolites in differing compartments of the
holobiont. These data, coupled with the on-going outputs from
rapidly developing ‘omics’ studies (genomics, transcriptomics,
proteomics and metabolomics) will aid in further elucidating the
metabolic cross-talk both within and between partners, which is
essential for maintaining the functional holobiont.
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