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Summary

The fluid dynamic analysis of animal wakes is becoming increasingly popular in studies of animal swimming and flying, due in
part to the development of quantitative flow visualization techniques such as digital particle imaging velocimetry (DPIV). In most
studies, quasi-steady flow is assumed and the flow analysis is based on velocity and/or vorticity fields measured at a single time
instant during the stroke cycle. The assumption of quasi-steady flow leads to neglect of unsteady (time-dependent) wake vortex
added-mass effects, which can contribute significantly to the instantaneous locomotive forces. In this paper we review a
Lagrangian approach recently introduced to determine unsteady wake vortex structure by tracking the trajectories of individual
fluid particles in the flow, rather than by analyzing the velocity/vorticity fields at fixed locations and single instants in time as in
the Eulerian perspective. Once the momentum of the wake vortex and its added mass are determined, the corresponding
unsteady locomotive forces can be quantified. Unlike previous studies that estimated the time-averaged forces over the stroke
cycle, this approach enables study of how instantaneous locomotive forces evolve over time. The utility of this method for
analyses of DPIV velocity measurements is explored, with the goal of demonstrating its applicability to data that are typically
available to investigators studying animal swimming and flying. The methods are equally applicable to computational fluid
dynamics studies where velocity field calculations are available.
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Introduction

Vortices are thought to play an important role in the mechanisms
of animal swimming and flying due to their prominence in the fluid
surrounding the animal. For example, vortex formation has been
identified as the key mechanism that enables many insects to
generate sufficient lift in flight (Maxworthy, 1979; Ellington et al.,
1996; Willmott et al., 1997; Sane, 2003). These animals rely on the
stably attached leading-edge vortex created by the insect wing
during flapping motions; the presence of this vortex greatly
enhances the forces used to hover and maneuver. Although this
leading-edge vortex mechanism is not as commonly observed in
swimming animals, the vortices generated during aquatic
locomotion also appear to affect thrust, maneuvering and
propulsive efficiency, i.e. the ratio of useful work for locomotion
to the total mechanical energy input (since the motion is typically
unsteady, propulsive efficiency is non-zero). Many examples can
be found in the swimming of medusae, amphibians, fishes, marine
mammals, etc. (e.g. Drucker and Lauder, 1999; Wilga and Lauder,
2004; Bartol, 2005; Dabiri et al., 2005; Stamhuis and Nauwelaerts,
2005).

Most studies investigate momentum transfer from the animal to
the fluid in the form of vortices, with the ultimate goal of
quantifying locomotive forces and understanding the role of
vortices in swimming and flying mechanisms. Indeed, the presence
of vorticity, or the resulting circulation to be more precise, is
necessary in steady locomotion (cf. Kutta—Joukowski theorem).
However, vortices are not solely responsible for animal locomotion
(Schultz and Webb, 2002). For example, Kanso et al. (Kanso et al.,
2005) demonstrated that, in theory, vorticity/circulation need not

be present at all in order for an articulated body to achieve unsteady
locomotion [see Saffman (Saffman, 1967) for an original proof-of-
concept]. If vorticity is not necessary for unsteady locomotion, then
perhaps there exist circumstances in which it is also not sufficient
to achieve that locomotion. And, if the presence of vorticity is not
sufficient to achieve certain modes of locomotion, then it is not
likely that a study of vorticity alone can deduce the locomotive
forces in those cases. These fundamental issues (including the
question of whether unsteady locomotion in air and water may have
actually arisen in spite of the presence of vorticity) have received
relatively little attention thus far.

‘When an animal moves through fluid, Newton’s second and third
laws together dictate that the locomotive force exerted by the fluid
on the animal has a magnitude equal to the rate at which the animal
imparts momentum to the fluid. To be sure, viscous dissipation and
vorticity cancellation will reduce the efficiency of the momentum
transfer process from 100 per cent, resulting in an ‘information
loss’ in the record of locomotive dynamics contained in the wake.
However, a simple viscous scaling argument shows that these
effects are usually negligible on the time scale of individual stroke
cycles. In particular, the distance & over which viscosity will act
during a single stroke of duration T is 8=(vTy)"?, where v is the
kinematic viscosity of the fluid (Rosenhead, 1963). Regions of
opposite-signed vorticity (e.g. shed from the anterior and posterior
edges of a fin or wing) must be within this distance T2 from
each other in order to undergo vorticity cancellation and the
associated information loss in the wake. For repeated swimming or
flying motions at frequency fs, the scaling is equivalently
d=(v/f,)"?. Hence, information loss in the wake becomes important
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if the ratio 8/L=(v/f,)""?/L is of the order of one or larger, where L
is the characteristic length scale of the appendage [the reader should
recognize this as effectively the inverse square root of the Reynolds
number (cf. White, 1991)]. A 1 Hz swimming motion in water
(v=102cm?s™) corresponds to a characteristic viscous length
scale & of ~1 mm, which is substantially smaller than the length
scales of most fish appendages (although not necessarily small for
swimming micro-organisms). In air (v=10~'cm?s™!) at 1Hz,
0=3 mm, which is also smaller than the length scales of most bird
appendages. Insects may have appendage length scales of this order
but will also operate at much higher frequencies, thereby reducing
the length scale 8. Therefore, for the near-wake (vis-a-vis far
downstream) studies of concern here in which the ratio 8/L is small,
we will assume no information loss between the dynamics of the
animal and the wake it generates.

The development of visualization and measurement techniques,
especially digital particle image velocimetry (DPIV), has given
researchers the ability to quantify kinematics and dynamics of the
animal wake (e.g. Muller et al., 1997; Drucker and Lauder, 1999;
Nauwelaerts et al., 2005; Spedding et al., 2003; Warrick et al.,
2005). To interpret the wake measurements, several models have
been proposed to estimate momentum transfer and evaluate
locomotive forces. For example, locomotive forces experienced by
the animal are calculated as the reaction to the momentum of vortex
loops shed into the wake (e.g. Drucker and Lauder, 1999; Drucker
and Lauder, 2001; Johansson and Lauder, 2004; Stamhuis and
Nauwelaerts, 2005). In these cases, the momentum of the vortex is
usually measured at the time instant when the vortex ring has just
detached from the animal fin/wing. The time-averaged locomotive
force over the stroke cycle is then determined by dividing the
momentum of the shed vortex by the time duration of the stroke
cycle. In other studies, the locomotive forces have been evaluated
by examining the wake far downstream, which is equivalent to
taking the time average of dynamics occurring at the site of force
generation (e.g. Spedding et al., 2003; Walker, 2004).

Only time-averaged locomotive forces (vis-a-vis time-dependent
forces) can be determined in the aforementioned studies because
they implicitly assume that the flow is steady so that the vortex
momentum can be determined from the distribution of vorticity
alone. As noted above, spatial vorticity distribution is insufficient
by itself to determine unsteady fluid dynamic forces; the velocity
potential is needed as well (Saffman, 1992). Dabiri (Dabiri, 2005)
suggested a connection between velocity potential and wake vortex
added mass and expressed the vortex momentum based on the bulk
motion of the vortex and its added mass. When a vortex, interacting
with a swimming or flying appendage [e.g. during formation of the
vortex by the appendage, or interaction with vortices formed
upstream as in Liao et al. (Liao et al., 2003a; Liao et al., 2003b)],
is accelerated through the surrounding fluid, it faces resistance due
to the inertia of fluid surrounding the vortex that is brought into
motion with the vortex. The inertia of this surrounding fluid in the
direction of vortex motion is the source of the added mass. The
governing fluid physics for wake vortex added mass is identical to
that for solid body added mass (Dabiri, 2006), and in a steady flow
the wake vortex added mass can be deduced solely from the
distribution of vorticity (Krueger, 2001). However, in an unsteady
flow this is no longer possible. Dabiri et al. (Dabiri et al., 2006)
showed that unsteady vortex added-mass effects become important
for flows in which the ratio:

Uy, 1

F 1+cii
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(i.e. unsteady effects accelerate wake vortex propagation) or:
SUy; 1
PEVi T
F 1+cii

(i.e. unsteady effects retard wake vortex propagation). Here, I is
the circulation of the wake vortex, S is the characteristic width of
the vortex in the direction of propagation, Uy is the velocity of the
vortex in the i-direction, and c¢;; is the vortex added-mass coefficient
for unidirectional motion in the i-direction. The former case is
common during wake vortex formation, whereas the latter case may
occur upon stroke reversal if wake capture is observed. One must
use care in interpreting this ratio for vortices in the far downstream
wake, because a reduced ratio:

SUv 1

r 1+c i

can also arise due to vortex breakdown and transition to turbulence
in the wake, processes that are of secondary importance to the
instantaneous locomotive dynamics.

Determination of wake vortex added mass in an unsteady flow
depends critically on identification of the physical boundary of the
vortex. Using a concept from dynamical systems called Lagrangian
coherent structures (LCS), the boundary of the vortex in a wake
can be determined by tracking fluid particles in the wake and
searching for material lines that are separatrices, effectively
partitioning flow regions with different dynamics (Haller, 2001;
Shadden et al., 2006).

In this paper, we review a recently developed analytical
framework to empirically deduce unsteady swimming and flying
forces based on the measurement of velocity and vortex added mass
in the animal wake. Given velocity field measurements in the wake,
the vortex boundary can be determined and the momentum of the
wake vortex and its added mass can be calculated, leading to a
quantitative evaluation of instantaneous locomotive forces. The
organization of this paper is as follows: (1) the LCS approach used
to identify the boundary of the wake vortex is described; (2) the
momentum of the wake vortex and locomotive forces are
determined based on the morphology and kinematics of the vortex;
(3) implementation of the method using 2-D velocity field data
from DPIV measurements is explored.

Materials and methods
Vortex boundary identification

As in most fluid dynamics problems, the potential approaches for
vortex boundary identification fall into one of two basic categories:
Eulerian (i.e. fixed in space) or Lagrangian (i.e. moving with
individual fluid particles). In most studies of animal vortex wakes,
the vortex structure is determined from Eulerian data, using
instantaneous vorticity or streamlines. For example, wake vortices
have been previously identified by locating regions with vorticity
above a given threshold (e.g. Drucker and Lauder, 1999; Drucker
and Lauder, 2001; Stamhuis and Nauwelaerts, 2005). Few studies
use streamlines to identify vortex structures in the animal wake;
streamlines are able to give a clearly defined vortex boundary in a
purely steady flow (e.g. Hill’s spherical vortex) but are of less use
in the highly unsteady flows characteristic of swimming and flying.
A method of coordinate transformation has been previously
developed to expand the utility of streamlines in time-dependent
flow (Dabiri and Gharib, 2004), but its use is limited to unsteady
cases where a single characteristic velocity can be identified in the
wake, e.g. in the isolated vortex ring-dominated wakes generated
by some jellyfish, squids and salps.
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An alternative is to study the wake from a Lagrangian
perspective. Instead of studying the instantaneous velocity/vorticity
field, fluid particle trajectories are used as the fundamental variable.
By following fluid particle trajectories, vortices tend to emerge
from the wake as coherent structures since, at the Reynolds
numbers of relevance to animal locomotion, fluid particles remain
inside a vortex over long convective time scales relative to fluid
particles outside the vortex (Provenzale, 1999). An exact criterion
for defining vortex boundaries in unsteady flows was introduced in
a series of papers by Haller (Haller, 2001; Haller, 2002; Haller,
2005); the boundaries are referred as Lagrangian coherent
structures (LCS). Recently, an approach using the finite-time
Lyapunov exponent field (FTLE) to locate LCS was developed
(Shadden et al., 2005; Shadden et al., 2006). This FTLE
approach is preferable because of its relative simplicity and
wide compatibility with other methods used to locate LCS in
time-dependent flows [e.g. hyperbolic time approach (Haller,
2001)].

In the present study, the aforementioned FTLE approach was
used to determine vortex boundaries. Given a flow map x(7) —
x(t+T), the FTLE is defined as:

o= L In (1)
171

b))
Sx(7o)

The FTLE measures, for particle trajectories starting near x(#j), the
maximum linearized growth rate of the distance perturbation dx
between adjacent fluid particles over the interval T, for trajectories
starting near X(#). In other words, it characterizes the amount of fluid
particle separation, or stretching, about the trajectory of point X over
the time interval [fy,fp+7]. The LCS boundaries are defined by the
local maxima, or ridges, of the FTLE field (Haller, 2001). They
indicate regions in the flow with distinct dynamics, e.g. vortices,
because fluid particle pairs straddling the vortex boundary separate
faster than other arbitrary fluid particle pairs. This is illustrated in
Fig. 1. Consider the two nearby fluid particles initially on opposite
sides of the vortex boundary. The two fluid particles separate
from each other much faster than other arbitrary fluid particle
pairs for which the two particles lie on the same side of the
boundary, thus giving ridges of high values in the corresponding
FTLE field.

The mathematical derivation is briefly summarized in Appendix
A; however, the reader is directed to the aforementioned papers for
greater technical detail.

As a proof of the concept, an example of the FTLE analysis is
shown in Fig. 2 (Shadden et al., 2006). A vortex ring is generated
in a water tank by a piston that accelerates fluid from right to left
through the open end of a cylinder. Velocity field data on the
median symmetry plane of the vortex is taken by DPIV. The FTLE
field is calculated for the moving vortex ring on this median
symmetry plane. The analysis is carried out in both backward time
and forward time. The ridges of high values of FTLE indicate the
geometry of the LCS. Whereas the vortex geometry cannot be
determined from inspection of the velocity field or the
corresponding vorticity field, the entire vortex boundary is revealed
by combining the forward- and backward-time LCS.

Momentum and locomotive force estimation
The momentum of the vortex wake consists of two components:
the linear momentum of the fluid inside the vortex and the linear
momentum of the fluid surrounding the vortex that is brought into
motion as the vortex accelerates.

Vortex
boundary

Fig. 1. Schematic diagram of a vortex boundary in a flow. (A) 3-D sketch of
a vortex ring; (B) the vortex ring on its median-symmetry plane. Circles with
inscribed arrows indicate vortex cores and their rotational sense. Two fluid
particles close to but on different sides of the vortex boundary separate
from each other faster than other arbitrary pairs of fluid particles, giving a
larger value of the finite-time Lyapunov exponent field (FTLE) at the
boundary. Adapted from Peng et al. (Peng et al., 2007).

The linear momentum of the fluid inside the vortex can be
expressed as:

Lnsige = p JUdV > (@)

Vy

where p is the density of the fluid, U is the velocity field inside the
vortex, and Vy is the volume of the vortex, defined by the LCS as
described in the previous section. If the wake vortex does not
deform rapidly, the impulse of the fluid circulating inside the vortex
can be simplified as:

Iinside = va Uy, (3)

where Uy is the velocity of the wake vortex center of mass. In this
form, Ijpsige accounts for the momentum of the vortex body of
volume Vy moving at a spatially averaged velocity Uy.

The latter component of momentum arises from the added mass
of the wake vortex and is identical to the added mass traditionally
associated with fluid surrounding solid bodies in potential flow.
The added mass is dependent on the shape of the body and can be
determined using the Kirchhoff potential (see Appendix B for
details). The boundary of a vortex ring (or, in 2-D, a vortex dipole)
can be approximated by an ellipsoid (or, in 2-D, an infinitely long
cylinder with an elliptical cross-section) whose added mass is given
by an analytical expression (Lamb, 1932).
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Fig. 2. Contour plots of FTLE fields calculated for a moving vortex ring
(propagating from right to left across the page). Left: backward-time FTLE;
right: forward-time FTLE. Adapted from Shadden et al. (Shadden et al., 2006).

Given the vortex added mass M,, the impulse of the wake vortex
added mass can be expressed as:

Laaded mass = MUy = vaCUV P (€]

where the added-mass coefficient C=M,/pVy is the ratio of vortex
added mass to the mass of the vortex itself. It should be mentioned
here that the added mass M, and its coefficient C are both tensor
quantities (matrices). Depending on whether or not bulk rotational
motion of the vortex (i.e. rotation of the principal axes of the vortex
volume) is accounted for, the velocity Uy is either a 3X1 or 6X1
vector, and the added-mass tensor M, is correspondingly a 3X3 or
6X6 matrix, respectively, with added-mass elements m;; that relate
acceleration in the ith direction to the resultant forces in the jth
direction (where i and j can assume translation in x-, y- and z-axis
directions in Cartesian coordinates, or rotation in the xy-, xz- and
yz-planes: repeated subscripts m;; do not indicate summation). If the
added-mass effect from bulk rotational motion of the vortex is
negligible, the added-mass tensor is a 3X3 matrix with non-zero
components m; on the diagonal only, representing the added mass
of the body associated with translational motion along each axis.
The total impulse I of the wake can then be simplified as:

1= vaUV + pVVCUV . (5)

By Newton’s second and third laws, the locomotive force exerted
by the fluid on the animal is equal and opposite to the rate at which
the momentum I of the wake changes due to the interaction between
the fluid and the animal:

a
or

F = p ait [(1+C)Vy Uy . (©)

Lagrangian wake analysis based on DPIV measurements
In this section, we discuss how to carry out the analyses described
in the previous section by using a data set typically available to
investigators studying animal swimming and flying: a time series
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of 2-D DPIV velocity fields [or equivalent computational fluid
dynamics (CFD) data]. These velocity measurements are usually
presented in a Eulerian frame, for which the velocity is defined at
fixed locations in space and at a series of discrete instants in time.
The locations in space at which velocity is measured usually form
a structured grid with rectangular elements.

To determine the vortex boundary, the FTLE is calculated on a
Cartesian grid defined in the region of the flow where the vortex
exists. The flow map &7 (x) at each node is calculated by
integrating velocity data over each time step between two
consecutive frames using a 4th-order Runge—Kutta integration
algorithm. Since the velocity data are also discrete in space, a 3rd-
order spatial interpolation is used to provide the necessary spatial
resolution. Once all of the nodes are mapped from their initial
positions at time 7=ty to their final time r=#+7, the FTLE is
determined on each node. The procedure is repeated for a range of
times fy to provide a time series of FTLE fields showing the
temporal evolution of the vortex structure. Positive and negative
integration time intervals are used to determine forward- and
backward-time FTLE fields, respectively, to locate repelling and
attracting LCS (see Appendix A). The entire vortex boundary is
given by combining the repelling and attracting LCS. Trials with a
coarse grid might be used initially to determine the region of the
flow where the LCS is located and the appropriate integration time
T, before adopting a denser grid for higher spatial resolution
calculation.

A color contour plot of the FTLE field and the application of a
threshold are usually sufficient for the purpose of identifying the
LCS. A more precise, mathematical approach to extract the LCS
from the FTLE field is provided by Shadden (Shadden, 2006).
There, the Hessian and the gradient of the FTLE field are
calculated. Since the eigenvector of the Hessian corresponding to
its minimum eigenvalue is tangent to the LCS and the gradient is
normal to the LCS, a scalar field can be formed by taking the inner
product of the two vector fields. LCS are extracted as zero-valued
level sets.

We have developed an in-house MATLAB code to analyze
experimental DPIV data or CFD data and to compute the
corresponding FTLE field. The software, LCS MATLAB Kit
version 1.0, can be downloaded at http://dabiri.caltech.edu/
software html. A more robust C-language software for this type of
calculation is MANGEN, developed by F. Lekien and C. Coulliette.
This package is also available online.

The vortex boundary is used to determine the volume Vy and the
velocity Uy of the vortex. The components of the added-mass
coefficient matrix C are also determined based on the vortex
boundary information. Finally, the locomotive force at each time
step can be determined according to Eqn 6 rewritten in a finite-
difference form:

p{[1+C(#, DIVv(t ) Uy (. )-[1+C(#) Vi (1) Uy (1) }.

Ar )
It should be noted that the methods in the previous two sections are
developed for general 3-D flows. For most animal wake studies,
only 2-D velocity field data are available. The 2-D vortex boundary
can be determined without difficulties. However, a 3-D
approximation of the vortex structure is required when the vortex
volume and its added-mass coefficient are calculated. For example,
the volume and added mass of a 3-D vortex ring are quite different
from those of a 2-D vortex dipole, though their cross-sections on
the median plane can be similar. The 3-D vortex structures can be

Fp ()=~
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approximated by assuming the existence of two planes of spatial
symmetry in the vortex, or by taking simultaneous DPIV
measurements in multiple planes of the flow.

Results

Some results from an analysis of the wake generated by a bluegill
sunfish pectoral fin (Peng et al., 2007) are shown here for
illustration. The repelling and attracting LCS (see Appendix A) in
the wake are shown in Fig. 3, superimposed on the velocity and
vorticity fields. The evolution of the vortex boundary is shown in
Fig. 4. These boundaries are assumed to lie on a symmetry plane.
Another symmetry plane is assumed to exist normal to this first
plane and equidistant from the vortex cores. The 3-D vortex
structure is approximated based on this assumption of two planes
of spatial symmetry. The vortex volume Vy and the velocity Uy
together with the added-mass coefficient matrix C can then be
determined and the locomotive forces evaluated. The results for the
locomotive forces are shown in Fig. 5. Since two components of
velocity Uy are known, forces in two directions (i.e. lateral and
vertical) can be determined.

Discussion and conclusions

In this paper we have reviewed a framework for combining
traditional DPIV measurements with a new class of Lagrangian
analysis tools to analyze animal vortex wakes. The Lagrangian
analysis provides clearly defined vortex boundaries in unsteady
flows, a capability not offered by Eulerian analysis based on
instantaneous vorticity or velocity fields. The information
regarding the animal wake vortex boundary enables the
determination of vortex added mass, which is a key component of
locomotive forces in unsteady wakes. Using this framework,
instantaneous forces, rather than time-averaged forces over a stroke
cycle, can be determined. These instantaneous forces dictate
important dynamics of locomotion such as the trajectory, speed and
efficiency of swimming and flying.

15 Fig. 3. The boundary of the vortex derived from
Lagrangian coherent structures (LCS). The left solid
line shows the attracting LCS from backward FTLE
calculation while the right solid line shows the

10 repelling LCS from forward FTLE calculation. Broken

lines are spline lines connecting the LCS. The fin

(curved with high brightness inside the lines) can be

seen embedded inside the vortex. The attracting and

repelling LCS do not intersect to give the entire
vortex boundary due to the limitation in integration

time T. Adapted from Peng et al. (Peng et al., 2007).

Vorticity (s™)

As revealed in the example of sunfish pectoral fin wake, the fin
is embedded within this wake vortex structure. Since it is known
that the vortex is attached to the fin, this result suggests that the
dynamical effect of the attached wake vortex on locomotion is to
replace the real animal fin with an ‘effective appendage’, whose
kinematics are determined by the external forces acting on it, e.g.
the force the fish exerts to move the fin through the water in the
example above. Furthermore, in the limit of irrotational, inviscid
flow the ‘effective appendage’ reduces to the fin itself, and the only
dynamical contribution for locomotion comes from the added mass
of the fin. Thus, the ‘effective appendage’ concept provides a
bridge between theoretical studies of locomotion in inviscid flows
(e.g. Kanso et al., 2005) and the dynamics of real animals.

20

10

y (mm)
o

-10

-20
-40 -30 -20 -10 0

Fig. 4. Time evolution of the vortex boundary. Vortex boundaries at 11
different time instances are plotted from red (=0 ms) to blue ({=300 ms)
with a time interval of 30 ms. Adapted from Peng et al. (Peng et al., 2007).
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Fig. 5. The locomotive force in (A) the horizontal and (B) the vertical
directions. Squares: calculated locomotive forces. Error bars indicate
uncertainty from measurement and evaluation. Solid line: spline fitting of
the data. Note that due to limitations on integration time, these plots are
based on the first 400 ms of a 600 ms fin beat cycle. Adapted from Peng et
al. (Peng et al., 2007).

Significant discrepancies can exist between the vortex boundary
dictated by LCS and the spatial distribution of vorticity in the flow
(e.g. Fig. 3). There are two primary sources for this disagreement.
First, viscous diffusion occurring at these finite Reynolds numbers
enables vorticity to cross the flow boundaries defined by the LCS,
even when these boundaries form perfect barriers to fluid transport.
A similar effect has been observed in studies of isolated vortex
rings (Dabiri and Gharib, 2004; Shadden et al., 2006), and in the
kinematics of boundary layer vorticity that defines ‘displacement
thickness’ in steady flows (Rosenhead, 1963). The second and
probably more dominant effect is that of appendage rotation, e.g.
the anteroventral rotation of the sunfish pectoral fin during its
downstroke. Haller (Haller, 2005) has shown that in flows with
global rotation, the vorticity field can be a poor indicator of vortex
boundaries. Hence, in these unsteady flows it is possible to lose a
correlation between the wake vortex boundary dictated by the LCS
and the spatial distribution of vorticity. The dynamical effect of
vorticity external to the LCS is a topic of ongoing study.

If the entire animal is located inside the LCS, then the
locomotive force is also internal to the LCS. In this case, the LCS
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can be treated using deformable body theory (Miloh and Galper,
1993) (cf. Eqn 5 and 6 above):

I=p JUdV + pVyCUy = constant . ®)
vy

Assuming that the absolute velocity U of a fluid element in the
volume of interest Vy can be expressed as the sum of the velocity
of the center of mass Uy and the velocity of that element relative
to the center of mass Uy, i.e. U=Uy+Uy, Eqn 8 can be rewritten
as:

p JUvdV + pVyCUy + p JUddV= constant 9)
vy vy
p(1+C)VyUy = p JUddV= constant . (10)
Vy

Applying Gauss’s theorem to the volume integral in Eqn 10,

P JUddV+ pJVd>ddV= pjd)dndS , (11)

Vy Vy Sy

where ¢y is called the deformation potential (Miloh and Galper,
1993). The surface integral in Eqn 11 can be considered the fluid
impulse (i.e. momentum) caused by the deformation Uy on the
surface of the wake vortex (now more loosely defined since Sy
encloses the entire animal). Thus:

p(1+C)VyUy + q = constant , (12)
where
q=p JUddV (13)
Vy

is the fluid impulse generated by the deformation of the vortex
body. Eqn 13 shows that the change of the total momentum of the
LCS is equal to the fluid potential caused by the deformation of the
LCS. This can be used to predict the trajectory of animals that swim
by using undulatory motions of the entire body, e.g. jellyfish, whose
entire body has been found to be enclosed by the forward- and
backward-time LCS in our ongoing studies (Peng and Dabiri,
2007).

When the present analytical framework is applied to 3-D
measurements, it can give much more accurate force estimates
than in 2-D studies. With 3-D DPIV data, the boundary of the
vortex can be determined directly instead of being approximated.
The volume and added mass of the vortex can then be accurately
quantified without making assumptions on the vortex structure.
Identification of 3-D vortex boundaries would also enable
evaluation of the effect of rotational added mass, which is
neglected in the present study. Although 3-D flow visualization
and measurement techniques have been developed and
implemented (e.g. Pereira et al., 2000), they are not yet in use in
studies of animal swimming and flying. In the meantime, the
approach described here can be used to interpret 2-D DPIV
measurement data already available to most researchers in the
field. Estimation of instantaneous, unsteady locomotive forces
can be made from these 2-D DPIV data, as shown in the example
above. A potential improvement using current 2-D DPIV is
simultaneous data collection in multiple perpendicular planes,
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which can give additional 2-D geometric information regarding
the 3-D vortex structure.

At this juncture, it is fair to ask how closely the estimates that
are currently deduced from 2-D measurements — both in the
present work and elsewhere in this field of study — agree with
the ‘correct’ answer. Validation using numerically defined
canonical flow fields is the goal of an ongoing study. Validation
within the context of animal swimming would be difficult at
present since it is not yet possible to simulate fully coupled fluid-
structure dynamics of self-propelled animals where the body
motion (e.g. flow-induced fin deformation) is solved iteratively
rather than being fixed or prescribed a priori. Comparison with
experimental measurements is also difficult in the absence of
instantaneous fluid dynamic measurements (velocity field, forces
and moments) that can be made simultaneously with recordings
of instantaneous body dynamics. Until then, we can only achieve
agreement amongst the various methods for force estimation.
Recent results (e.g. Peng et al., 2007) suggest that the
instantaneous force estimation techniques described here are
compatible with time-averaged forces deduced from traditional
vorticity studies and with qualitative observations of animal body
dynamics.

Appendix A
FTLE calculation
Given a time-dependent velocity field u(x,t), the trajectory of a
fluid particle x(#) can be determined by the ordinary differential
equation:

X(H) =u[x().1] , (Al)

with given initial conditions. The flow map, which maps fluid
particles from their initial location at time # to their location at time
to+T can be expressed as:

ot (x) 1 x(to) = x(10+T) (A2)
where d)’,g+T (X)=x(#y+7T) describes the current location of a fluid
particle advected from the location x(#) at time #, after a time

interval 7. A given infinitesimal perturbation 8xy at time fy is
transformed to 8x by the relation:

5x = VoI (008, . (A3)

where V " (x) is the deformation gradient tensor and is defined
by:

ty+T
V(btt(ﬁT (x) = M . (A4)
0 dX

The magnitude of the perturbation is given by:

[3x] =~/ (8o, [VHX) ¥V (x)3x) | (A5)

where [ ]* denotes the transpose of matrix [ ]. The symmetric
matrix:

A= [VortT 1*V T (x) (A6)

is the Cauchy—Green deformation tensor.

Let Amax(A) be the maximum eigenvalue of the Cauchy—Green
deformation tensor. Note from Eqn A5 that [Amax(A)]Y? gives the
maximum stretching of x¢ [i.e. the maximum separation of fluid
particle pairs initially located at x(#p)] when X is aligned with the
eigenvector associated with Aax(A); hence,

”8X ”max =A }\max (A) ” BXOH . (A7)

Introducing the finite-time Lyapunov exponent o;’(x):

og<x>=|l mmzimuaﬂ

. (A8
Tl I 1 5x%(0) (A9

it measures the maximum linearized growth rate of the perturbation
ox over the interval T, for trajectories starting near x(fy). In other
words, it characterizes the amount of fluid particle separation, or
stretching, about the trajectory of point x over the time interval
[70.t0+T1.

It is important to note that though the FTLE ¢;/(x) is a function
of position variable x and time ¢, it is thought of as a Lagrangian
quantity since it is derived from fluid particle trajectories over the
time interval /=[t,t+T]. The absolute value |71 is used instead of 7 in
Eqn A8 because FTLE can be computed for 7>0 and 7<0. The
material line is called a repelling LCS (7>0) over the time interval /
if infinitesimal perturbations away from this line grow monotonically
under the linearized flow. The material line is called an attracting
repelling LCS (7<0) if it is a repelling LCS over [ in backward time.

The integration time |71 is chosen according to the particular flow
being analyzed. If a smaller integration time is used, then less of
the boundary is revealed, whereas if a longer integration time is
used, more of the boundary is revealed (i.e. relative differences in
fluid particle behavior become more apparent when observed over
longer periods of time). Generally, if the integration time |71 is
sufficiently long, the repelling and the attracting LCS usually
intersect to give the boundary of the vortex [in cases where a vortex
is known to be present; cf. Fig. 6 in Shadden et al. (Shadden et al.,
2006)]. A larger integration time 171 also gives LCS with higher
spatial resolution. However, the choice of |71 is sometimes limited
in practice by the availability of data.

Appendix B
Added-mass calculation
For a vortex of arbitrary, possibly irregular shape, the added mass
can be determined by using the Kirchhoff potential:

M, = —pj@@ndS , (B1)

Sy

where p is the fluid density, ® is the Kirchhoff potential for steady
translational motion of the vortex, n is the outward normal unit
vector to the surface, and the symbol (X) represents a tensor product
of two vectors. The integral is calculated on the entire surface of
the body S,. The components of Kirchhoff potential ® are solutions
of the Laplace equation whose gradient tends to zero at infinity and
satisfies the boundary condition:

o

: B2
PR (B2)

From Eqns B1 and B2 it can be seen that the added mass M, depends
solely on the shape of the wake vortex and not on its motion.
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