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Introduction
It has been recognized for many years that hypercapnic

acidosis produces a negative inotropic effect which, at least in
the mammalian heart, is caused by a decrease in myofilament
Ca2+ responsiveness (Fabiato and Fabiato, 1978; Mattiazzi et
al., 1979; Blanchard and Solaro, 1984; Marban and Kusuoka,
1987; Orchard et al., 1991). The initial impairment of
contractility is followed by a partial recovery that occurs in
spite of the persistent extracellular acidosis (Mattiazzi and
Cingolani, 1977b; Fry and Poole-Wilson, 1981; Cingolani et
al., 1990; Pérez et al., 1993). Considerable research has been
done in mammalian heart, in order to elucidate the causes of
this recovery (e.g. Orchard and Kentish, 1990). Among the
possible mechanisms proposed are either a recovery of
intracellular pH (pHi), which would restore myofilament

responsiveness to Ca2+ (Boron and De Weer, 1976; Kim and
Smith, 1988; Cingolani et al., 1990) and/or an increase in
intracellular calcium concentration ([Ca2+]i) (Solaro et al.,
1988; Nomura et al., 2002). The general consensus is that
mechanical recovery in mammalian heart is completely or
partially linked to the recovery of pHi mediated by the Na+/H+

exchanger (NHE). The recovery of pHi may not only restore
myofilament Ca2+ responsiveness but could also, by
increasing intracellular Na+ concentration ([Na+]i), produce an
increase in [Ca2+]i by either reducing the forward (Ca2+ efflux)
mode of the Na+/Ca2+ exchanger (NCX) or by enhancing the
reverse (Ca2+ influx) mode (Bountra and Vaughan-Jones,
1989; Cingolani et al., 1990; Terraciano and MacLeod, 1994).
This increased [Ca2+]i could contribute to load the
sarcoplasmic reticulum (SR) which, by releasing Ca2+, would
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participate in the contractile recovery (Harrison et al., 1992).
In addition, [Ca2+]i may also increase by a displacement from
intracellular buffering sites, because of a competition with H+

ions (Lagerstrand and Poupa, 1980; Gambassi and
Capogrossi, 1992). In ectoderms, the recovery from acidosis
is largely variable among species, ranging from no recovery
at all to a recovery that can exceed contractile values before
acidosis (Gesser and Jorgensen, 1982; Driedzic and Gesser,
1994). The contractile response to acidosis in the amphibian
heart, was earlier characterised in our laboratory (Mattiazzi
and Cingolani, 1977a). Although qualitatively the mechanical
pattern is similar to that observed in the mammalian ventricle,
in the amphibian heart the negative inotropic effect of acidosis
is less pronounced and the recovery of contractility is greater,
reaching levels similar to or even higher than the control
values before acidosis. The underlying mechanisms of this
recovery are far from understood and studies from mammalian
species might be misleading because of the particular
excitation–contraction coupling (ECC) of amphibians, which
differs from mammalian myocardium in several aspects. In
contrast to the situation of mammalian heart, the SR of the
amphibian heart is poorly developed (Page and Niedergerke,
1972), does not bind ryanodine, and the ryanodine receptors
are not detectable (Tijskens et al., 2003). In accordance with
these findings the Ca2+ induced-Ca2+ release mechanism is
also absent (Fabiato, 1982). Since the SR does not contribute
significantly to the Ca2+ transient, the L-type Ca2+ channels
are the major sources of activating Ca2+ (Klitzner and Morad,
1983; Morad et al., 1988). Moreover, myocardial relaxation
takes place mainly by Ca2+ efflux through the NCX (Chapman
and Rodrigo, 1985; Shuba et al., 1998) instead of by the Ca2+

ATPase of the SR as in mammalian heart (Bers et al., 1993;
Negretti et al., 1993). Of interest is the fact that the contractile
mechanism of the neonatal mammalian ventricle shares some
common features with the amphibian heart. In neonatal
mammalian heart, the SR is poorly developed (Olivetti et al.,
1980; Tanaka et al., 1989) and contractility depends mainly
on sarcolemmal Ca2+ influx (Mahony, 1996). Moreover, the
NCX also plays a major role in Ca2+ extrusion in the neonatal
myocardium (Artman, 1992; Vetter et al., 1995). Thus,
knowledge of the mechanisms responsible for the recovery
from acidosis in toad ventricle might also contribute to a better
understanding of the behaviour of neonatal mammalian heart
during acidosis.

The present study was designed to elucidate the mechanisms
involved in the contractile recovery from acidosis in the toad
heart.

Materials and methods
The animals used in this study were maintained in

accordance with the National Institute of Health Guide for the
Care and Use of Laboratory Animals (NHI Pub. No. 85-23,
Revised 1996). Toads (Buffo arenarum Hensel) were killed by
decapitation, the spinal cord was destroyed with a steel rod and
the heart was then excised.

Toad ventricular strips

Ventricular strips were dissected from rings cut
perpendicularly to the longitudinal axis of the toad ventricular
wall. The methods used for mounting and stimulation were
essentially similar to those previously described (Mattiazzi and
Cingolani, 1977a). Briefly, ventricular strips were mounted
vertically in a chamber to contract isometrically. One of the ends
of the muscle was firmly fixed to the bottom of the chamber by
a small clamp and the other to a force transducer (Harvard
Apparatus, South Natick, MA, USA), via a stainless steel wire.
The muscles were paced to contract at a constant frequency
(10·beats·min–1), kept at a constant temperature (30°C) and
superfused with a solution of the following composition
(mmol·l–1): 120.37·NaCl, 2.5·KCl, 1.35·CaCl2, 25·NaHCO3,
0.35·NaH2PO4, 1.05·MgSO4, 10.7·glucose (bicarbonate-
buffered Ringer solution, BRS). This solution was equilibrated
with a gas mixture of 5% CO2 and 95% O2 (pH·7.45±0.02).

Mechanical studies

Once the ventricular strips were mounted, they were
stretched until they reached the length at which maximal
developed tension (DT) occurred and then allowed to stabilize
for 1·h. Hypercapnic acidosis was induced by switching the gas
bubbling of the BRS from 5% CO2 (pHo·7.45±0.02) to 12%
CO2 (pHo·6.83±0.02). Contractility was assessed by DT, and
maximal rate of rise of tension (+dT/dt).

Action potential recording

Strips of ventricular wall were mounted with the epicardial
side facing up, in a Plexyglass chamber and superfused with
control solution at room temperature. After recording the
control action potentials (AP), the perfusion solution was
switched to BRS equilibrated with 12% CO2, and the AP
recorded for 20·min. In order to arrest contraction, 1·mmol·l–1

2,3-butanedione monoxime (BDM; Sigma, St Louis, MO,
USA) was added to the BRS (Mulieri et al., 1989). Previous
experiments have shown that this concentration of BDM has
no significant effect on action potential duration (APD)
(Gwathmey et al., 1991). Membrane potentials were measured
by means of conventional electrophysiological techniques
using glass microelectrodes filled with 3·mol·l–1 KCl. The
microelectrodes had resistances ranging from 10 to 20·M� and
were coupled to a high input impedance electrometer (W.P.
Instruments, New Haven, CT, USA), whose output was
recorded on line by a data acquisition system (Power Lab/410,
ADinstruments, Sydney, Australia), connected to a personal
computer. Action potentials were elicited by supramaximal
square pulses of 2·ms duration, generated by a stimulator (S 48
Grass, Quincy, MA, USA) and delivered by means of two thin
tungsten external electrodes placed close to the preparation.
The negative capacitance of the electrometer was adjusted
before the action potential recording. 

Toad ventricular myocytes

Toad myocytes were isolated according to the technique
previously described (Vila-Petroff et al., 2000) with some
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modifications (Fischmeister and Hartzell, 1986). Briefly, the
hearts were attached via the aorta to a cannula, excised and
mounted in a Langendorff apparatus. They were then retrogradly
superfused at 30°C, at a constant perfusion flow of 2–4·ml·min–1

with Hepes-buffered solution (HBS) of the following
composition (mmol·l–1): 146.2·NaCl, 4.7·KCl, 1·CaCl2,
10.0·Hepes, 0.35·NaH2PO4, 1.05·MgSO4, 10.7·glucose (pH
adjusted to 7.4 with NaOH). The solution was continuously
bubbled with 100% O2. After a stabilization period of 10·min, the
perfusion was switched to a nominally Ca2+-free HBS for 4·min.
Hearts were then recirculated with 0.75·mg·ml–1 collagenase
(Worthington, Lakewood, NJ, USA), 0.075·mg·ml–1 protease and
1.25% bovine serum albumin (BSA) (Sigma, St Louis, MO,
USA), in HBS containing 50·�mol·l–1 CaCl2. Perfusion
continued for 14·min. Hearts were then removed from the
perfusion apparatus by cutting at the atrial–ventricular junction.
The tissue was minced and shaken in a Petri dish containing
20·ml of the same HBS used for digestion, with the addition of
0.7·mg·ml–1 collagenase. After 10–15·min, the dissociated
myocytes were separated from the undigested tissue and rinsed
several times with HBS containing 1% BSA and increasing
CaCl2 concentrations from 50·�mol·l–1 to 1·mmol·l–1. After each
wash, myocytes were left for sedimentation for 10–15·min and
finally kept in HBS at room temperature (20–22°C), until use.
Quiescent myocytes with clear striations and an obvious marked
shortening and relaxation on stimulation were used. At the
beginning of the experiments, the cells were transferred to BRS
equilibrated with 95% O2/5% CO2 and left to stabilize for 20·min.
The protocols for hypercapnic acidosis were performed at room
temperature. Intracellular acidosis was produced by switching the
perfusion solution from BRS equilibrated with 5% CO2 to BRS
equilibrated with 12% CO2.

pHi measurements

After enzymatic isolation, myocytes were loaded with
the membrane-permeant acetoxymethyl ester form of
the fluorescent H+-sensitive indicator SNARF-1/AM
(Molecular Probes, Eugene, OR, USA). Cell suspensions
(2·ml) were exposed to a final concentration of 4·�mol·l–1

SNARF-1/AM. After 10·min, the myocytes were gently
centrifuged for 2·min, diluted in Hepes buffer and stored at
room temperature until use. pHi and cell length were monitored
on the stage of a modified inverted microscope (Nikon Diaphot
200, Tokyo, Japan), as previously described (Vila-Petroff et
al., 2000). After excitation at 530±5·nm, the ratio of SNARF-
1/AM emission at 590±5·nm to that of 640±5·nm, was used as
a measure of pHi, according to an in vivo calibration. This
calibration was obtained from SNARF-1/AM-loaded myocytes
exposed to solutions of varying pH values, containing
140·mmol·l–1 KCl, 20·�mol·l–1 nigericin, 1·�mol·l–1

valinomycin and 1·�mol·l–1 carbonyl cyanide p-
(trifluoromethoxy)-phenylhydrazone, at room temperature.

[Na+]i measurements

For [Na+]i measurements the isolated myocytes were loaded
with the cell permeant acetoxymethyl ester form of the

sodium-binding benzofuran isophthalate (SBFI AM;
Molecular Probes, Eugene, OR, USA). Myocytes were
incubated for 120·min at 37°C under regular gentle shaking
with 10·�mol·l–1 SBFI AM and 0.01% (w/v) pluronic acid.
Myocytes were washed and resuspended in 5·ml Hepes
solution and kept for 15·min to ensure complete de-
esterification of all residual intracellular SBFI AM. SBFI-
loaded myocytes were used in the emission ratio mode,
according to the technique previously described (Baartscheer
et al., 1997). Briefly, fluorescence was excited (Omega optical
XF1093 340AF15, Brattleboro, VT, USA) at 340·nm through
the 40� objective. Emitted light passed a barrier filter of
400·nm, a 450·nm dichroic mirror and two narrow band
interference filters of 410·nm and 590·nm. Fluorescence
signals were sampled at a rate of 103·Hz and averaged.
Background fluorescence was subtracted from each signal
before obtaining the 410:590 fluorescence ratio. The ratio of
the SBFI emission at the two wavelengths was taken as an
estimation of the [Na+]i.

Myocyte shortening

Myocytes were placed in a flow chamber on the stage of an
inverted microscope, superfused with BRS solution
equilibrated with 5% CO2, and electrically stimulated with
square pulses (0.5·Hz, 50% above threshold). Resting cell
length and cell shortening were recorded online using a
photodiode array system and data acquisition software (Ion
Optix, Milton, MA, USA).

Simultaneous measurement of myocyte Ca2+
i transients and

shortening

In order to correlate the myocyte cell shortening with the
simultaneous changes in [Ca2+]i, isolated myocytes were
loaded with the cell permeant acetoxymethyl ester (AM)
form of the fluorescent Ca2+

i indicator Fura-2 (Molecular
Probes, Eugene, OR, USA). The dye stock was made in
DMSO and pluronic acid. The cells were incubated with
HBS containing 4·�mol·l–1 Fura-2 for 20·min, then washed
and left for de-esterification for 30·min. Fura-2-loaded cells
were placed in a flow chamber on the stage of an inverted
microscope adapted for epifluorescence. Myocytes were
superfused with the BRS solution equilibrated with 5%
CO2, at a constant flow of 2·ml·min–1. Cell fluorescence at
510·nm was monitored with a photomultiplier tube during
alternate excitation with light of 360 and 380·nm
wavelengths. The ratio of the fluorescence at 360·nm
excitation to that at 380·nm excitation, was taken as an
estimation of [Ca2+]i.

Statistics

All data are presented as means ± s.e.m. Comparisons within
groups were assessed by paired Student’s t-tests. Analysis of
variance (ANOVA) was used when required as indicated in the
text. A value of P<0.05 was taken to indicate statistical
significance.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



919Toad ventricular contractile recovery from acidosis

Results
Effect of hypercapnic acidosis on ventricular strip contraction

Fig.·1A shows a continuous recording of the contractile
response to acidosis induced by elevating the CO2 of the gas
mixture that equilibrates the medium from 5% to 12%, in
muscle strips contracting at 10·beats·min–1 and 30°C. An initial
fall of developed tension was followed by a spontaneous
recovery, which attained levels higher than the previous
control. Fig.·1B shows the overall results of the time course of
the effect of hypercapnic acidosis on developed tension. The
maximal depression of contractility, occurring after 4·min of
acidosis (82.30±1.31% of control) was followed by a recovery
that reached values significantly higher than control
(113.70±3.03%), after 30·min of persistent low pHo. Similar
results were obtained in an additional experimental series
performed at 30·beats·min–1 and 24°C (data not shown).

Changes in pHi during hypercapnic acidosis

To measure the variation of pHi during hypercapnic
acidosis, experiments were performed in isolated toad

myocytes, subjected to the same protocol used in the
ventricular strips. Fig.·2A shows a typical experiment in
which a single myocyte was subjected to two cycles of
hypercapnic acidosis, first in the absence and then in the
presence of 5·�mol·l–1 of the NHE inhibitor, cariporide. In the
absence of cariporide, pHi fell from a basal value of 7.41 to
7.01, and returned to control values after 20·min. In the
presence of cariporide, pHi decreased from 7.37 to 6.95, and
persisted at these low values throughout the 20·min of
recording. Control experiments indicated that two successive
cycles of acidosis in the same myocyte, do not affect pHi

recovery. The overall results of five experiments of the same
type are shown in Fig.·2B. These results indicate that during
a sustained hypercapnic acidosis, the NHE is the mechanism
responsible for the restitution of pHi to control values.

Fig.·1. Biphasic inotropic effect of hypercapnic acidosis on toad
ventricle. (A) Continuous recording of developed tension (DT) and
maximal rate of rise of tension (+dT/dt) during isometric contraction.
Hypercapnia produced an abrupt decrease in contractility followed by
recovery that exceeded control values. (B) Overall results of the effect
of acidosis on DT. Data are means ± s.e.m. (N=49). *P<0.05 with
respect to values before hypercapnia.
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Independence of contractile recovery from pHi restitution

In order to determine whether recovery of the pHi through
activation of the NHE is responsible for the mechanical
recovery, myocyte shortening was recorded during
hypercapnic acidosis in the presence and in the absence of
5·�mol·l–1 cariporide. Fig.·3A,B shows overall results of the
effect of the NHE inhibitor on the mechanical recovery
during hypercapnic acidosis in isolated myocytes and
ventricular strips. The presence of the NHE inhibitor failed
to inhibit the contractile recovery, in spite of having
abolished pHi restitution, as shown in the experiments with
isolated myocytes (Fig.·2A,B). Similar results were observed
with 10 and 30·�mol·l–1 of the drug, when used in
ventricular strips (data not shown). All the doses tested did
not affect the basal contractile and relaxation parameters
(Table·1).

Taken together, the results indicate that the recovery of
contractility in the toad ventricle is independent of pHi

recovery.

M. A. Salas and others

[Ca2+]i and acidosis

Since contractile recovery from an acid load was not
dependent on pHi restitution, we explored the possibility that
the contractile recovery was due to an increase in Ca2+

i levels.
Using electrically stimulated Fura-2-loaded toad cardiac

myocytes we investigated the effect of hypercapnic acidosis on
the unloaded contraction and intracellular Ca2+ transient (CaiT).
Fig.·4A shows a representative example of the effect of a
hypercapnic solution on myocyte contraction and the
associated CaiT. As described earlier, hypercapnic acidosis
produced a rapid decrease in cell shortening, followed by a
recovery to control levels. The initial impairment in
contractility occurred without a parallel decrease in the CaiT
amplitude, but was associated with a large prolongation of the
CaiT duration. The overall results of these experiments indicate
that the decrease in contractility produced by hypercapnic
acidosis is associated with a significant decrease in half
relaxation time of cell shortening (t1/2), a significant increase in
diastolic and systolic [Ca2+]i and a significant prolongation of
the t1/2 of CaiT decay (Fig.·4B). These results indicate that in
the toad ventricle, the decrease in contractility evoked by
hypercapnic acidosis is due to a decrease in myofilament
responsiveness to Ca2+, similar to mammalian heart.
Contractility recovery occurs associated with a significant
increase in both diastolic and systolic [Ca2+]i. Moreover,
although the decrease in t1/2 of cell shortening showed a

Fig.·3. Effect of persistent hypercapnic acidosis on contractile
recovery in the presence and absence of the Na+/H+ exchanger (NHE)
inhibition. (A) Isolated myocytes. During hypercapnic acidosis,
contractility followed a pattern similar to that of ventricular strips,
reaching control values after an initial fall. In spite of abolishing pHi

restitution with the NHE inhibitor cariporide (5·�mol·l–1), the
inotropic recovery was not cancelled. (B) Ventricular strips. The
presence of cariporide (5·�mol·l–1) did not modify the inotropic
response of the toad ventricle to acidosis. There were no statistically
significant differences between control and cariporide-treated
preparations. Data are means ± s.e.m. of five experiments.
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Table 1. Effect of the different treatments on basal contractile
parameters

A Ventricular strips
N DT (g) t1/2 (ms)

Control 5 1.07±0.19 101±5.57
Cariporide 5 �mol l–1 5 1.08±0.24 101±6.25

Control 4 1.23±0.11 146±4.41
Cariporide 10 �mol l–1 4 1.21±0.12 140±5.63

Control 6 0.95±0.10 111±6.40
Cariporide 30 �mol l–1 6 1.05±0.22 115±4.47

Control 5 1.31±0.09 125±5.92
KB-R 20 �mol l–1 5 1.27±0.09 128±6.44

Control 5 1.24±0.44 139±9.80
Nifedipine 0.5 �mol l–1 5 0.71±0.30 130±7.07

B Isolated myocytes
Shortening

N (% of Lo) t1/2 (ms)

Control 5 4.13±0.60 471±25.80
Cariporide 5 �mol l–1 5 4.51±0.42 466±30.60

Control 4 5.66±1.30 551±93.64
KB-R 1�mol l–1 4 6.03±1.27 563±75.07

DT, developed tension; t1/2, half relaxation time of contraction; Lo,
resting cell length.

Values are mean ± s.e.m.
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tendency to recover, it did not reach control values and t1/2 of
CaiT decay remained significantly prolonged, suggesting that
the reduced myofilament responsiveness to Ca2+ persists during
the mechanical recovery from acidosis. Thus, the contractile
recovery observed during hypercapnic acidosis is mainly due
to a gradual increase in the [Ca2+]i. The cause for the sustained
decrease in myofilament responsiveness to Ca2+ is not apparent
to us but may suggest acidosis-induced alterations/
modifications in the contractile proteins, which recover with a
slower time course than the pHi recovery. Indeed it is widely

recognized that acidosis affects the different steps of Ca2+

signalling with different time courses (Endoh, 2001).
Taken together, these results indicate that the main

mechanism underlying the contractile recovery during
hypercapnic acidosis in the toad heart is an increase in
[Ca2+]i and occurs in spite of the lack of recovery of
myofilament responsiveness to Ca2+. Furthermore, in a
species with a poorly developed SR such as the toad, the
results showing that the increase in [Ca2+]i during the
recovery from acidosis is mostly due to the elevation in

diastolic [Ca2+]i would be consistent with an
enhanced Ca2+ entry to the cell and failure to
extrude this excess of Ca2+ during diastole. This
could be explained by the NCX operating in the
reverse mode, introducing Ca2+ into the cell. This
extra Ca2+ may exceed the capacity of the NCX,
during the diastolic period, to extrude all the Ca2+

that entered the cell.

Mechanisms of Ca2+ increase during acidosis

The sarcoplasmic reticulum

Control experiments indicated that incubation of
toad ventricular strips with ryanodine (Ry; 1·�mol·l–1)
and thapsigargin (Ts; 1·�mol·l–1 Sigma), administered
together, did not affect either basal contractility
(Ry–Ts: 98±3.27% of control) or the mechanical
recovery during acidosis (114.8±7.14% versus
111.2±6.68% of preacidic values for control and
Ry–Ts-treated muscles, respectively). In agreement
with previous findings (Fabiato, 1982; Klitzner and
Morad, 1983; Morad et al., 1988) these experiments
indicate that the SR does not play a significant role in
the ECC of this species or in the mechanical recovery
from acidosis.

Influx of Ca2+ during acidosis

Among the mechanisms able to increase [Ca2+]i in
toad ventricle, Ca2+ influx through calcium channels
and/or through the NCX working in the reverse
mode, are plausible candidates. To investigate
these possibilities we performed the following
experiments in toad ventricular strips and isolated
myocytes.
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Fig.·4. Effect of hypercapnic acidosis on calcium transient
(CaiT). (A) Top, a typical continuous recording of myocyte
cell length during hypercapnic acidosis. Below, actual
tracings of the individual twitch contractions and the Fura-
2 fluorescence transients at the times indicated by letters
a–c on the continuous chart. (B) Overall results of the
effect of acidosis on CaiT, shortening and relaxation time
of both parameters. The results indicate that during the
recovery there is an increase in diastolic and peak systolic
[Ca2+]i with a prolongation of the CaiT (results from five
different myocytes). *P<0.05 vs values before
hypercapnia.
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Influx of Ca2+ through NCX

Hypercapnic acidosis was induced in the presence of KB-
R, (2-[2-[4-(4-nitro-benzyloxy)phenyl] ethyl] isothiourea
methanesulphonate; Tocris, Ellisville, MO, USA), an
inhibitor of the reverse mode of the NCX (Iwamoto et al.,
1996). Fig.·5A shows that preincubation of isolated myocytes
with 1·�mol·l–1 KB-R, a dose that did not affect basal
shortening in this preparation (Table·1), abolished the
contractile recovery from acidosis. Myocyte shortening
decreased from 6.00±1.60% to 2.39±0.74% of resting cell
length (Lo), after 2·min of hypercapnic acidosis and remained
at these low values at the end of the experimental period
(1.78±0.80% of Lo). Similar results were obtained after
incubating ventricular strips with 20·�mol·l–1 of KB-R.
(Fig.·5B). To further confirm the participation of the NCX in
contractile restitution, an additional set of experiments was
designed in which the NCX inhibitor was added once the
negative inotropic effect produced by the acidosis had
recovered. In these conditions the addition of KB-R
(20·�mol·l–1) to the ventricular strips completely suppressed
the increase in developed tension, returning contractility to
the values observed before the beginning of recovery
(Fig.·5C). Fig.·5D shows the overall results of these
experiments.

M. A. Salas and others

[Na+]i measurements

The activity of the reverse mode of the NCX may be favored
by an increase in [Na+]i. Since the mechanical recovery is
independent of the activity of the NHE (Figs·2 and 3), a
possible increase in [Na+]i if responsible for the activation of
this mode of the NCX, should occur by mechanisms different
from those of the NHE. We therefore assessed [Na+]i during
hypercapnic acidosis, in the presence of NHE inhibition.
Fig.·6A shows a continuous recording of [Na+]i in the presence
of 5·�mol·l–1 cariporide, before and during hypercapnic
acidosis, and after the addition of 10·�mol·l–1 ouabain (Sigma),
to inhibit the Na+-K+-ATPase pump. Whereas acidosis in the
presence of cariporide failed to affect [Na+]i, the addition of
ouabain evoked a significant increase. Fig.·6B depicts the
overall results of these experiments.

Influx of Ca 2+ through Ca2+ channels

The following experiments were conducted to elucidate the
role of Ca2+ influx through L-type Ca2+ channels in the
contractile recovery from acidosis. Ventricular strips were
pretreated with 0.5·�mol·l–1 nifedipine (Sigma) for 20·min.
This nifedipine concentration decreased basal contractility to
53±4.25% of control (Table·1) and 10·�mol·l–1 of nifedipine
was sufficient to completely abolish contractility. When
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hypercapnic acidosis was induced in the presence of
0.5·�mol·l–1 nifedipine, the ventricular strips showed a
complete inhibition of contractile recovery as shown in Fig.·7.

Taken together, these experiments indicate that the blockade
of either of the two main pathways of Ca2+ influx in the
amphibian ventricle is able to completely abolish the
mechanical recovery.

Effect of acidosis on action potential duration

In order to elucidate whether hypercapnic acidosis alters
action potential duration (APD) of toad ventricular
myocardium, APs were monitored in ventricular strips
superfused with BRS equilibrated with 5% CO2 and then
switched to BRS equilibrated with 12% CO2. Fig.·8A, depicts
a representative tracing of two APs recorded at control or at
acid pH. Acidosis induced a prolongation of the repolarization
phase. A significant lengthening of the time to 20% (APD20),
50% (APD50) and 90% (APD90) of repolarization occurred
after 3.40±0.02·min of acidosis and persisted during the 30·min
period of recording. Overall results of these experiments are
shown in Fig.·8B. Control experiments in which the strips were
perfused with BRS (5% CO2) for 30·min, failed to show
detectable changes in APD.

Discussion
Acidosis-induced decrease in myocardial contractility is

mediated by a decrease in Ca2+ myofilament responsiveness

In the mammalian species, there is agreement in the fact that
acidosis induces an initial fall in myocardial contractility, due
to a decrease in myofilament responsiveness to Ca2+ (Fabiato
and Fabiato, 1978; Mattiazzi et al., 1979; Blanchard and
Solaro, 1984; Marban and Kusuoka, 1987; Orchard et al.,
1991). The present experiments extend this conclusion to the
amphibian heart. We showed for the first time in the amphibian
heart, that the decrease in contractility induced by acidosis
occurred with no significant changes in Ca2+ transient
amplitude, supporting the contention that this negative
inotropic effect is mediated, also in this species, by a decrease
in Ca2+ myofilament responsiveness.

Recovery of contractility during acidosis: independence of
pHi and dependence on [Ca2+]i

Depending on the species and the experimental conditions,
the negative inotropic effect of acidosis is followed by a
complete (Mattiazzi and Cingolani, 1977a; Gesser and
Jorgensen, 1982), partial (Gesser and Jorgensen, 1982;
Mattiazzi and Cingolani, 1977b; Cingolani et al., 1990; Pérez
et al., 1993) or no recovery (Gesser and Jorgensen, 1982;
Hoglund and Gesser, 1987) of contractility. The evidence to
explain the increment in the contractile response has not been
straightforward. Some investigators have found that
intracellular acidosis was followed by restitution of pHi and,
since the contractile recovery was completely abolished by
NHE inhibition, they suggested that pHi restitution and the
contractile recovery were entirely dependent on the activity of
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this ion exchanger (Pérez et al., 1993). Experiments performed
in isolated ferret hearts showed that although NHE inhibition
abolished the recovery of pHi during respiratory acidosis,
ventricular-developed pressure recovered partially (Cingolani
et al., 1990). Of interest, Snow et al. (Snow et al., 1982)
reported a recuperation of the contractile activity in amphibian
hearts during hypercapnic acidosis, but they failed to detect a
recovery of pHi. Our results, in isolated myocytes, clearly
showed an NHE-mediated pHi restitution after hypercapnic
acidosis in toad ventricle. However, the inhibition of the NHE
with cariporide failed to abolish the positive inotropic response
in both preparations, ventricular strips and myocytes. These
results indicate that contractile recovery from acidosis, in the
toad heart, is independent of pHi recovery and appears to be
the consequence of an increase in [Ca2+]i. The rise in [Ca2+]i

during acidosis has already been reported in other species
(Solaro et al., 1988; Nomura et al., 2002) and our results using
Fura-2-loaded myocytes are consistent with this observation
(Fig.·4).

Dependence of contractile recovery on Ca2+ influx: NCX vs L-
type Ca2+channels

In species with a poorly developed SR, Ca2+ influx from the
extracellular space is the main source of activating contractile
Ca2+ (Klitzner and Morad, 1983; Hoglund and Gesser, 1987;
Vornanen, 1999; Tijskens et al., 2003). In agreement with these
findings, our results indicate that blockade of SR function does
not affect either basal contractility or the mechanical recovery
from acidosis. Earlier experiments suggested that the major
influx of Ca2+ in the amphibian heart occurs through the L-type
Ca2+ channel (Tijskens et al., 2003). In line with these findings,
the present results showed that inhibition of the NCX failed to
affect basal contractility and 10·�mol·l–1 nifedipine was able

to completely block contraction. However, the results obtained
with the inhibitor of the reverse mode of the NCX support the
contention that the exchanger does play an important role in
the recovery from acidosis. It could be argued that the
concentration of KB-R used in ventricular strips is above that
commonly used in mammalian heart. However, the
concentration of KB-R necessary to block the reverse mode of
the NCX seems to depend on the species or the stage of
development [i.e. those with poorly developed SR require
higher concentration (Woo and Morad, 2001; Huang et al.,
2005)], and the experimental conditions [acid conditions
require higher concentrations than normal pH (Ladilov et al.,
1999; Schäfer et al., 2001)]. Nevertheless, similar results were
obtained in isolated toad myocytes, using a much lower
concentration of KB-R that also had no effect on basal
contractility.

There are at least two, not mutually exclusive, mechanisms
that may account for the increase in [Ca2+]i through the
reverse mode of the NCX during acidosis. First, a decrease
in the transmembrane Na+ gradient as a result of an increase
in [Na+]i, which would favour the reverse mode of the NCX.
The present results indicate that this possibility is unlikely.
An increase in [Na+]i could be expected during acidosis, from
either the activation of the NHE and/or from the Na+/CO3H–

cotransporter or from an acidosis-induced inhibition of  Na+-
K+-ATPase activity (Speralakis and Lee, 1971;
Balasubramanian et al., 1973). However, these explanations
could be discarded based on the following findings. (1) The
complete inhibition of pHi recovery with cariporide would
exclude the Na+/CO3H– cotransporter as a significant
mechanism in the regulation of pHi; (2) The independence of
contractile recovery from pHi recovery, would exclude the
participation of the NHE; (3) The lack of detection of any
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significant increase in [Na+]i during acidosis in the presence
of NHE blockade, would indicate that the inhibition of the
Na+-K+-ATPase pump is not significantly involved. A second
possible mechanism that would favour the reverse NCX
mode, is a prolongation of the time at which membrane
potential is above the equilibrium potential for the NCX.
During this time, the NCX would work in the Ca2+ influx
mode. This possibility is supported by the present
experiments. Although the effects of acidosis on APD in the
mammalian heart are controversial (Chesnais et al., 1975; Fry
and Poole-Wilson, 1981; Sato et al., 1985; Komukai et al.,
2002), we clearly showed a prolongation of the AP at
different repolarization times throughout the acidosis period
in the toad ventricle. The mechanism of the AP prolongation
was not explored in the present work. However, we showed
that nifedipine was able to block mechanical recovery. Thus,
it is tempting to speculate that acidosis, by increasing Ca2+

entry through L-type Ca2+ channels, might account for the
prolongation of the AP, which in turn would favour the influx
of Ca2+ through the reverse mode of the NCX. Although this
is an attractive hypothesis, at least two different observations
argue against its veracity. First, Ca2+ entry through L-type
Ca2+ channels has been shown to be either decreased
(Orchard and Kentish, 1990) or not changed by acidosis
(Komukai et al., 2002); second, different experiments in
mammalian ventricle have linked the prolongation of AP
duration, during acidosis, to an inhibition of repolarizing K+

currents rather than to activation of the Ca2+ inward current
(Harvey and Ten Eick, 1989; Komukai et al., 2002). If this
holds true for the amphibian heart, a possible explanation for
our results might be that the decrease in myofilament
responsiveness to Ca2+ (or any other intracellular effect of
acidosis), triggers the activation of the two main pathways of
Ca2+ influx to the cell, the L-type Ca2+ channels and the
reverse mode of the NCX, both of which would be favoured,
in addition, by the prolongation of the AP. However, this
possibility cannot explain our finding that the separate
inhibition of any of them precludes the recovery. A second
possible explanation of the somewhat unexpected finding that
nifedipine and KB-R are both able to block the mechanical
recovery, would rely on the property of nifedipine, to
decrease the AP duration (Go et al., 2005). This effect would
negate the prolongation of the AP produced by acidosis and
therefore the entry of Ca2+ through the NCX. If this were the
case, nifedipine would indirectly preclude the activity of the
NCX in the reverse mode. Clearly, further work is needed to
clarify this issue.

Our results indicate that in toad ventricular myocardium a
decrease in myofilament responsiveness to Ca2+ mediates the
initial fall in contractility observed during hypercapnic
acidosis, similar to what has been discussed in mammalian
heart. The subsequent recovery of contractility is due to an
increase in Ca2+ influx. While NCX appears to play a central
role in the increase of the [Ca2+]i, participation of the L-type
Ca2+ channels cannot be ruled out. In addition, the results
provide clear evidence supporting the view that the mechanical

recovery from acidosis is not a pHi-dependent mechanism in
the amphibian heart.
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List of abbreviations
BRS bicarbonate-buffered Ringer solution
DT developed tension
pHi intracellular pH
[Ca2+]i intracellular calcium concentration
[Na+]i intracellular sodium concentration
CaiT calcium transient
KB-R 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl] isothiourea

methanesulphonate, inhibitor of the reverse 
mode of the Na+/Ca2+ exchanger

NHE Na+/H+ exchanger
NCX Na+/Ca2+ exchanger
APD action potential duration
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