
Motor-driven, scaled-up model wings of a hovering
hawkmoth, Manduca sexta L., and fruit fly, Drosophila
melanogaster (Meigen 1830), have allowed tremendous
progress in our understanding of the flight forces on hovering
insect wings. Visualization of the flow past the Manduca
model wings confirmed the expectation (Ellington, 1984;
Dickinson and Götz, 1993) that an attached leading-edge
vortex augments flight forces during the translation phase of
wing movement and showed that a spanwise flow stabilized
the vortex and prevented its shedding into the wake (Van den
Berg and Ellington, 1997a,b).

Measured forces on the model wings of Drosophilasupport
previous work showing that a large portion of the lift impulse
is generated during stroke reversals (Dickinson et al., 1999).
These model Drosophilaexperiments showed two force peaks
during stroke reversal. One peak occurred while the wing was
rapidly pitching about a spanwise axis, and the timing and sign
of this peak was a function of the timing of wing rotation.
Because of this behavior, Dickinson et al. (1999) argued that
the rotation of the wing adds a rotational circulation component
to the total circulation and that the associated force component
is similar to the Magnus force occurring on translating and
rotating cylinders and spheres. The second peak occurs
immediately after stroke reversal and is independent of the
timing of wing rotation. This behavior suggested to Dickinson
et al. (1999) that the aerodynamic force is augmented because
of an interaction with the wake shed by the previous stroke.

These interpretations of the rotational forces have been
challenged by recent computational fluid dynamic (CFD)
results suggesting that the rotation-dependent peak can be
explained by the rapid generation of strong vorticity due to
wing rotation, while the rotation-independent peak can be
explained by the acceleration reaction (the reaction to
accelerating an added mass of fluid; Sun and Tang, 2002).

The present study explores the nature of the rotation-
dependent peak and how it can be modeled. The theoretical
force (F), per unit span, on a thin-airfoil in translation and
rotation at low angles of attack is a function of the
superposition of four circulatory components: 

F =ρU(Γt +Γh+Γr +ΓM) , (1)

where ρ is fluid density, U is fluid velocity, Γt is the
translational circulation due to the wing being attached to a
translating body, Γh is the heaving circulation due to the wing
actively or passively oscillating, Γr is the rotational circulation
due to the wing rotating around a spanwise axis, and ΓM is the
Magnus circulation (sensu stricto), which is also due to wing
rotation (Fung, 1993). Γt, Γh and Γr arise because the
corresponding kinematic components (translation, heaving and
rotation, respectively) create an incident flow at a finite angle
(α′ ) with the wing section. The presence of a finite angle
between the wing section and incident flow distorts the
boundary layer, creating an asymmetry in the speed of flow
over the upper and lower surface of the wing section. ΓM
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This paper addresses the question, do the rotational
forces in the hovering fruit fly Drosophila melanogaster
reflect something different (the Magnus effect) or more
of the same (circulatory-and-attached-vortex force)? The
results of an unsteady blade-element model using
empirically derived force coefficients from translating
(root-oscillating) wings are compared with recent results
derived from both the measured forces on a dynamically
scaled Drosophila wing and the computational fluid
dynamic (CFD)-modeled forces on a virtual Drosophila
wing. The behavior of the forces in all three models during
wing rotation supports the hypothesis that rotational lift is
not a novel aerodynamic mechanism but is caused by the

same fluid-dynamic mechanism that occurs during wing
translation. A comparison of the unsteady model with a
quasi-steady model that employs empirically derived
rotational coefficients further supports the hypothesis that
rotational forces are more of the same. Finally, the overall
similarity of the results between the unsteady model, the
physical wing model and the CFD model suggests that the
unsteady model can be used to explore the performance
consequences of kinematic variation and to investigate
locomotor control in freely moving animals.
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differs from the other circulatory components because it is
independent of α′ .

The distortion and resulting normal (lift) force on a pitched
wing in a uniform flow (in which case, only Γt applies) is
similar to the Magnus effect – the distortion of the boundary
layer and resulting lift that occur on a cylinder or sphere that
is both translating and rotating around an axis normal to the
translation. The force component due to Γt is, therefore, a
Magnus-like force but is not the Magnus-like force discussed
by Dickinson et al. (1999). Flapping and rotating wings in a
uniform flow will distort the boundary layer similarly (again,
because of their influence on α′ ). The force components due
to Γh and Γr are, therefore, Magnus-like forces, but the
component due to Γh is also not the Magnus-like force
discussed by Dickinson et al. (1999). The force component due
to Γr arises from the rotational component of the wing’s motion
to the incident flow and the resulting α′ (see below) and, in this
sense, it is really no different from the force components due
to Γt and Γh. Because the Γr component is due to wing rotation,
and the dynamics of the associated force partially resemble the
Magnus effect on rotating cylinders, it is this force component
that Dickinson et al. (1999) refer to as Magnus-like. The force
component due to ΓM is similar to that due to Γr in that it is
dependent on wing rotation but differs from the Γr component
in that it is independent of the angle of the incident flow.
Because ΓM is also independent of the chordwise center of the
incident flow (in contrast to Γr), the force component due to
ΓM exactly resembles the Magnus effect on a rotating cylinder
and it is this force that Sun and Tang (2002) refer to as the
Magnus force. I refer to the combined force due to Γt, Γh and
Γr as the circulatory-and-attached-vortex force (see below),
and the force due to ΓM as the Magnus force.

In this paper, I use a previously developed (Walker and
Westneat, 2000), semi-empirical, unsteady blade-element
(USBE) model to address the question, do the rotational forces
in the hovering fruit fly reflect something different (Magnus
circulation and corresponding Magnus force) or more of the
same (circulatory-and-attached-vortex force)? The unsteady
results are quite similar to the measured forces on the physical
wing models and to CFD estimates of the flight forces, and the
rotational forces are well modeled by unsteady coefficients
measured on translating wings, which supports the hypothesis
that forces occurring during wing rotation arise from the same
fluid-dynamic mechanisms as forces occurring during wing
translation (viz the circulatory-and-attached-vortex force and
acceleration reaction).

Materials and methods
The unsteady blade-element model

A very general, semi-empirical, unsteady blade-element
(USBE) model of the dynamics of a root-oscillating limb (wing
or fin) was developed previously (Walker and Westneat, 2000).
The model has two components; one due to added mass
(acceleration reaction) and the other due to unsteady
circulation and the influence of an attached vortex. The

geometry of the incident flow and incident angle of attack
in the USBE model is a large-angle generalization of
Theodorsen’s model of a wing in flutter (Theodorsen, 1935),
which is described in detail by Fung (1993). The history of
the Theodorsen and similar models and applications to insect
flight are outlined by Zbikowski (2002). Applications of the
Theodorsen model to the flapping flight of vertebrates are
found in DeLaurier (1993) and Kamakoti et al. (2000). The
unique feature of the USBE model is that empirical force
coefficients measured from oscillating wings are used instead
of theoretical coefficients based on the Theodorsen function
or its modifications. Unsteady coefficients based on the
Theodorsen function are not a function of time but are unsteady
in that they are a function of the reduced frequency parameter.
The raw coefficients used in this study are steady in both senses
(although they are modified by the unsteady Wagner function).
The Theodorsen coefficients are an approximation for low
angles of incidence and attached flow. Consequently, the
Theodorsen coefficients are not particularly useful for much of
the wing stroke of a hovering Drosophila because the
Drosophilastroke is characterized by incident angles that are
much larger than the stall angle throughout much of the stroke
cycle (Dickinson et al., 1999). One advantage of the
empirically derived coefficients is that they explicitly account
for the augmenting effect of an attached vortex when the wing
is above the stall angle.

While the augmented circulatory force due to Γr was
included in the model, Magnus-type forces due to ΓM were not.
Magnus forces have not been previously modeled in biological
applications of flapping wings, but Fung (1993) suggests that
these forces should contribute to the lift balance. The extended
model below adds this Magnus force component. The simple
kinematics of a Drosophilawing oscillating along a horizontal
stroke plane allow the model to be greatly simplified. The full
model is detailed by Walker and Westneat (2000).

The USBE model begins with a geometric description of
wing kinematics. The wing has length (span), R, and is
arbitrarily divided along its span into p elements with equal
width: dR=R/p. The length-specific radial position is r̂=r/R,
where r is the distance from the wing base. In the following,
the bracketed subscripts indicate that a variable is a function
of time (t) and/or radial position along the wing span (r).

The azimuth position of the wing, γ(t), is the angle between
the rotational axis of the wing and a horizontal vector directed
posterior to the fly. In this coordinate system, γ(t) is 0° when
the rotational axis is back against the body and 90° when it is
perpendicular to the body axis. Following previous work, the
wing does not oscillate with simple harmonic motion but
instead rapidly accelerates to a constant angular velocity. The
non-dimensional period of linear acceleration at each stroke
reversal is ∆τ̂ t and the timing of the acceleration is symmetric
about the point of stroke reversal.

The pitch of a wing chord, α(t), is the angle between the wing
chord and the flapping axis (which is normal to the stroke plane
and, therefore, vertical for the hovering Drosophila) (Fig. 1).
α(t) is negative when the wing is pronated and is positive when
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the wing is supinated. The geometric angle of attack, αg(t), is
the angle of the wing chord relative to the stroke plane and is
equal to π/2+α(t) for the case of a horizontal stroke plane
(Fig. 1). Again, the wing does not rotate with simple harmonic
motion. The non-dimensional period of each rotational phase
(there are two phases per stroke cycle) is ∆τ̂ r, and the non-
dimensional time difference between the mid-point of rotation
and stroke reversal is τ̂ f (Sane and Dickinson, 2001).

The normal, vn(r,t), and chordwise, vx(r,t), flow due to wing
translation and rotation are:

vn(r,t)=h·(r,t)cos(α(t)) + (x̂i − x̂r(r))c(r)α· (t) (2)

vx(r,t) =h·(r,t)sin(α(t)) . (3)

These equations assume that the velocity component due to
body translation is trivial, an assumption that is relaxed in the
full model (Walker and Westneat, 2000). Equation 3 and the
first component of Equation 2 are due to the wing element
translating (due to flapping) with a speed, h·(r,t)=r̂Rγ·(t). The
second component of Equation 2 is due to the wing rotating
around a spanwise axis located x̂r(r)c(r) from the leading edge
and the chordwise center of incident flow located x̂ic(r) from
the leading edge, where x̂i and x̂r(r) are percentage distances
along the chord, and c(r) is chord length. It is important to note
that x̂r(r) is a function of wing shape and cannot be constant
along the span. This is easily seen using, as an example, the
distal wing chord on the wing illustrated by Sane and
Dickinson (2002). If the rotational axis, x̂o, is 0.25, the entire
distal element is posterior to the rotational axis, and the
element-specific rotation axis, x̂r(r), must be less than zero. The
values of x̂o used for each analysis are found in Table 1. The
value of x̂i must satisfy the boundary condition of tangent flow.
For attached flow, x̂i occurs at the three-quarter chord location
(DeLaurier, 1993; Fung, 1993). While initial work on the root-
oscillating Drosophilawing model indicated that x̂i=0.75 for
separated flow (Dickinson et al., 1999), more detailed work has
shown that x̂i is a function of rotational velocity and can be as

low as 0.57 (Sane and Dickinson, 2002). In the present study,
a constant value of 0.75 was used, although future work could
easily incorporate a x̂i that is dependent on rotational velocity.

The angle of incidence, α ′(r,t), between the wing chord and
the incident stream is ±tan–1(vn(r,t)/vx(r,t)), where the ± takes the
sign of vx(r,t) (Fig. 1). This angle is used to estimate the lift and
drag coefficients (see below) and the components of the
circulatory force normal to (dFn(r,t)) and parallel with (dFx(r,t))
the wing chord:

dFn(r,t)= dL′(r,t)cosα′(r,t) + dD′(r,t)sinα′(r,t) (4)

dFx(r,t) = dL′(r,t)sinα′(r,t) −dD′(r,t)cosα′(r,t) . (5)

dL′(r,t) and dD′(r,t), the components of the circulatory force
normal to and parallel with the local stream, are:

dL′(r,t) = Gρv2
(r,t)c(r)Φ(r,t)CL(r,t)dR (6)

dD′(r,t) = Gρv2
(r,t)c(r)Φ(r,t)CD(r,t)dR, (7)

where 

v2
(r,t) =v2

n(r,t)+v2
x(r,t) . (8)

CL(r,t) and CD(r,t) are empirically derived lift and drag
coefficients measured from oscillating wings at a constant α′
(Dickinson et al., 1999). These coefficients reflect the
augmenting effects of a stable, attached, leading-edge vortex
on the downstream surface of the wing when α′ is above a
threshold (approximately 13–15°). The additional component
due to the attached vortex is known as the attached-vortex
force (Kuethe and Chow, 1986). Despite the presence of the
attached vortex, the measured coefficients on a root-oscillating
wing at a constant angle of attack remain relatively stable
for several chord lengths of travel (Dickinson et al., 1999;
Usherwood and Ellington, 2002a) and can, therefore, be
considered quasi-steady (Dickinson et al., 1999; Sane and
Dickinson, 2002). It is important to note that the coefficients
were measured following the influence of the initial, inertial
peak and Wagner-effect trough (Dickinson et al., 1999). In
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Fig. 1. Cross section of an airfoil illustrating
geometry of the principal model parameters.
(A) The arrows indicate that the wing is translating
to the left due to root-flapping and rotating about
the point r due to active supination or pronation.
Point i is the location of the incident flow, which is
illustrated in (B). The subscript (r) has been
removed from x̂r, x̂i and c for clarity. (B) The
relevant flow velocity components due to root-
flapping (r̂Rγ·(t)) and wing rotation [(x̂i–x̂r(r))c(r)α· (t)]
and their resultant, v(r,t). Also illustrated are the
wing pitch, α, the geometric attack angle, αg, and
the angle of incidence, α′ , acting at the point i in
(A).
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Equations 6 and 7, Φ(r,t) is the Wagner function due to Garrick
(Fung, 1993) and accounts for the interaction between the wing
and the starting vortex at the beginning of a stroke. It is this
function that effectively makes the coefficients in this model
unsteady. The time-course of this wing-wake interaction effect
is much longer than that due to wake capture (which is not
included in the model). The vertical (lift) and horizontal (drag)
force components on a blade element due to the circulatory-
and-attached-vortex force are:

dLc(r,t)= [dFn(r,t)cos(αg(t)) + dFx(r,t)sin(αg(t))] (9)

dDc(r,t)= [dFn(r,t)sin(αg(t)) + dFx(r,t)cos(αg(t))] . (10)

Note that if the rotational component of the resultant stream
were ignored, lift and drag could be estimated directly from
Equations 6 and 7.

The added mass force, or acceleration reaction, normal to
the wing element is:

where βn is the added mass coefficient of the wing section (a
value of 1.0 was used). x̂i=0.5 was used for the computation of
v·n(r,t) (see Equation 2 above; DeLaurier, 1993; Fung, 1993).
The vertical (lift) and horizontal (drag) components of dFa(r,t)

are:
dLa(r,t)= dFa(r,t)cos(αg(t)) (12)

dDa(r,t)= dFa(r,t)sin(αg(t)) . (13)

The acceleration reaction is an unsteady, non-circulatory force
(Fung, 1993). Note also that (1) the acceleration reaction
generates lift even when the wing is linearly accelerating along
the horizontal plane (see the force traces in Dickinson and
Götz, 1993) and that (2) the acceleration reaction is non-zero
even when the wing is translating without linear acceleration
but is rotating (due to the derivative of the rotational
component of vn(r,t) in Equation 2).

Finally, the Magnus force due to ΓM can be modeled by:

dFr(r,t) = Sρπc2
(r)r̂Rα·2

(t)dR , (14)

which is the product of the added mass (Sρπc2
(r)dR), the

translational velocity (r̂ Rα·(t)) and the angular rotation (α·(t)) of
the element (Fung, 1993; section 6.7, equation 10). Note that
dFr(r,t) is a force arising from a circulatory component due to
wing rotation but, unlike the unsteady circulatory force due to
Γr, the Magnus force (due to ΓM) is independent of both the
angle of incident, α′ , and the rotational moment, (x̂i–x̂r(r))c(r).
Except where noted, the Magnus force component is not
included in the unsteady model.

Comparisons

Results from the USBE model are compared with both the
measured forces on the dynamically scaled Drosophila wing
(Dickinson et al., 1999) and the CFD-modeled forces on the
virtual Drosophilawing (Sun and Tang, 2002). Wing chords
for the physical wing were computed from an outline of the
wing provided by M. H. Dickinson. Wing chords for the virtual
wing were computed from the digitized outline of the
illustrated wing in Sun and Tang (2002). For the comparisons
with the virtual wing, the output forces were standardized by
GρS(r̂ 2Rγ·)2. For the comparisons with the physical wing, the
output forces were left unstandardized. Morphological and
kinematic parameters for the three physical wing (PM1–PM3)
and four virtual wing (VM1–VM4) comparisons are given in
Table 1.

Results
Lift and drag for case PM1, the wing with unequal

downstroke and upstroke αg(t), are illustrated in Fig. 2. The
shape of the unsteady drag curve is nearly identical to the
measured drag curve, but the modeled peaks near the end of
each stroke are approximately 20% greater than the measured
peaks. The modeled drag during the translational phase of the

(11)dFa(r,t)= ρc2
(r)v·n(r,t)βndR,

π
4
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Table 1.Kinematic variables for the physical wing model (PM) and virtual wing model (VM) comparisons

Case Source Fig. ∆τ̂t ∆τ̂r τ̂f x̂o αdown αup

PM1 1 1 0.12 0.32 –0.08 0.2 –50 70
PM2 1 3 0.12 0.32 –0.08 0.2 –50 50
PM3 1 3 0.12 0.32 0.08 0.2 –50 50
VM1 2 6 0.24 0.32 –0.08 0.2 –50 50
VM2 2 6 0.105 0.32 –0.08 0.2 –50 50
VM3 2 11 0.24 0.32 0 0.2 –50 50
VM4 2 11 0.24 0.32 0.08 0.2 –50 50

Source 1, Dickinson et al., 1999; Source 2, Sun and Tang, 2002. Fig. refers to the figure in the source paper from which the force curves were
digitized. 

In PM1, PM2, VM1 and VM2, wing rotation is ‘advanced’ relative to stroke reversal. In PM3 and VM4, rotation is ‘delayed’. In VM3, wing
rotation is symmetric about stroke reversal. 

∆τ̂t is the non-dimensional duration of wing translational velocity; ∆τ̂r is the non-dimensional duration of wing rotation; τ̂f is the non-
dimensional rotational timing parameter; x̂o is the rotational axis; αdown and αup are the pitch angles of the wing during the translation phase of
the down and up strokes, respectively.
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upstroke is steady while the corresponding measured drag
gradually rises. The modeled lift curve closely matches the
measured lift curve, with the major differences occurring
during the translation-only phase of the stroke cycle. Relative
to the modeled rate, the measured rate of increased lift during
the translation phase is slightly greater during the downstroke
but much greater during the upstroke.

Both modeled and measured lift for case PM2 show distinct
lift peaks at the beginning of each stroke, but the measured lift
peaks are approximately 50% greater than the corresponding
modeled lift peaks (Fig. 3). Similarly, the measured lift
occurring during the translation phase of each stroke is
distinctly greater than the modeled lift. By contrast, the
magnitude of the modeled and measured lift peaks occurring
at the ends of each stroke and the negative peaks occurring at
stroke reversals are nearly identical. The general shape of the
modeled and measured lift curves for case PM3 is very similar,
but the broad lift peaks of the unsteady model are distinctly

truncated, and the negative, measured peak at the
downstroke–upstroke reversal is approximately 65% greater
than the modeled peak.

VM1 and VM2 were used to demonstrate the effect of the
duration of the linear acceleration phase, ∆τ̂ t, on the presence
of large force peaks at the beginning of each stroke (Sun
and Tang, 2002). The similarity between the CFD-modeled
and USBE-modeled curves is quite striking (Fig. 4). The
magnitude of the rotation-dependent drag peak (the peak
occurring at the beginning of the stroke) is approximately the
same for the CFD and USBE curves, but the rotation-
dependent lift peak is approximately 30% higher in the USBE
curve. The USBE lift decomposition (Fig. 5) shows two
important features. First, the end-stroke lift peak is dominated
by the circulatory component, although a small acceleration
reaction component does occur despite the fact that the wing
is translating with zero acceleration during this part of the
cycle. Second, the beginning-stroke lift peak is dominated by
the acceleration reaction, as suggested previously (Sun and
Tang, 2002).
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Fig. 2. Comparison of (A) drag and (B) lift across one stroke cycle
for physical wing model 1 (PM1). The red line indicates the unsteady
blade-element (USBE) model, the green line indicates the quasi-
steady model with the Magnus force included, and the blue line
indicates the measured forces on the physical wing model.

Downstroke Upstroke

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

t̂

–0.3

0

0.3

0.2

0.1

–0.1

–0.2
Li

ft
 (

N
)

L
if

t (
N

)

0

0.5

0.3

0.4

0.2

0.1

–0.1

A

B
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VM1, VM3 and VM4 were used to demonstrate the effect
of the timing of wing rotation relative to stroke reversal (Sun
and Tang, 2002), and the general features of the lift curve are
similar to the corresponding physical wing experiments
(Dickinson et al., 1999). Again, the similarity of the CFD-
modeled and USBE-modeled curves is remarkable (Fig. 6).
The drag curves differ in one important respect: the CFD-
delayed curve presents a distinct peak at the beginning of each
stroke that is nearly twice the magnitude of the corresponding
peak in the USBE model. The CFD and USBE lift curves for
VM3 and VM4 show differences that occur in VM1 but are
greatly magnified. In other words, while the USBE estimates
of lift during the translation phase are approximately 0.1 units
higher than the CFD estimates for VM1, this difference is
0.25 units higher for VM3 and VM4. Importantly, however, the
slope of the lift curve during the translation phase is nearly
identical for the CFD and USBE models.

The addition of the Magnus force to the unsteady model has
no effect on drag because of the horizontal stroke plane. Except
for perhaps PM3, the addition of the Magnus force to the
unsteady model results in a generally worse fit to the measured
results because of the more positive peaks during wing rotation
(Figs 1, 2). These results suggest that the influence of the
Magnus force is trivial, at best, during the hovering flight of
Drosophila. Because of the generally worse fit when the
Magnus force is included in the unsteady model, its effect was
removed for all comparisons with the virtual wing model.

Discussion
Accuracy of the unsteady model

The subtle kinematic changes exploited by animals to
control swimming and flying forces are not well known
(Taylor, 2001). The map of variation in measured forces on a
pair of motor-driven wings as a function of wing kinematics
provides detailed predictions on how animals might control
locomotor forces (Sane and Dickinson, 2001). Comparisons of
limb kinematics and body forces on tethered animals allow
detailed investigation of locomotor control, but the tethering
may introduce artifacts that are not found in freely flying
animals. Ultimately, we want to know how freely moving
animals control locomotor forces, a goal that will require a
comparison of detailed limb kinematics and body dynamics.

Such comparisons are uncommon. The pectoral fin
kinematics during the flapping flight of the bird wrasse
Gomphosus variuswere compared with measures of
instantaneous dorsoventral and anteroposterior accelerations of
the body in order to infer control of swimming forces (Walker
and Westneat, 1997). Measures of body dynamics in freely
moving animals require the numerical differentiation of the
measured displacement of the body with respect to time. The
errors involved in this type of analysis have been discussed
previously (Harper and Blake, 1989; Walker, 1998).
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VM1 and VM2. The unsteady blade-element (USBE) model results
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A complimentary approach to estimating body dynamics
with a numerical differentiation method is the application of a
fluid-dynamic model to the limb kinematics. The USBE model
explored in the present study was initially developed to
compare the performance of oscillating limbs undergoing a
variety of motions at Reynolds numbers (Re) above 1000
(Walker and Westneat, 2000) and below 100 (Walker, 2002).
The results of the present study suggest that predictions from
the simulations are probably robust against small errors in the
unsteady model. The application of the unsteady model to the
investigation of locomotor control in freely moving animals
should also require reasonable model accuracy. While the
ability of the unsteady model to estimate measured forces on
motor-driven plates was briefly discussed previously (Walker
and Westneat, 2000), it is worth checking the accuracy of the
model more formally. The comparison of the unsteady results
to the measured forces on the physical model (Dickinson et al.,
1999) with the CFD results on the virtual model allows this
comparison (Sun and Tang, 2002).

In general, the shape and elevation of the force curves from
the USBE model are quite similar to the corresponding
physical model and CFD curves. The slopes of the USBE drag
and, especially, lift curves during the translation phases differ
from those of the physical model curves but are strikingly
similar to the slopes seen in the CFD model curves. Although
the slopes during the translation phase are similar for the USBE
and CFD models, the USBE lift estimates are consistently
12–18% greater than the CFD estimates. Indeed, the USBE
estimate of the mean lift coefficient C

–
L across the whole stroke

cycle ranges from 6% to 25% greater than the CFD estimate
(similar trends occur with the drag coefficient CD but, because
of the larger scale, these trends are only conspicuous during
the rotational peaks). The relationship between the USBE and
physical model during the translation phase is more variable,
largely because of the variability in the measured forces. The
source of this variability is unknown but is clearly not being
accounted by either the unsteady or CFD models.

While the USBE model captures the rotation-dependent
force peaks effectively (e.g. at the end of the strokes in Figs 2,
3), it fails to capture the rotation-independent peaks when these
are large (e.g. at the beginning of each stroke in Fig. 3). While
the modeled peaks reflect an inertial contribution (acceleration
reaction) to the force balance (Fig. 5), this mechanism is
clearly insufficient to account for the large measured peaks.
These results, then, support the original interpretation that
these peaks reflect wake capture (Dickinson et al., 1999) and
not the acceleration reaction (Sun and Tang, 2002).

The similarity between the USBE model results and the
physical and, especially, CFD model results suggests that, with
few caveats, the USBE model is sufficient to investigate both
simulated kinematic parameter spaces (Walker and Westneat,
2000; Walker, 2002) and locomotor control from measured
kinematic variables in freely moving animals. The principal
caveats of the broad application of the model are accounting
for the effects of reduced frequency, Reand model wing shape
on the measured force coefficients. Unfortunately, there is no
work measuring the force coefficients on root-oscillating
wings with finite reduced frequencies (i.e. in translation). The
lift and drag coefficients employed in this study reflect the
influence of the induced downwash, which influence should
decrease as the reduced frequency approaches zero. To account
for this decreased influence, one could use two-dimensional
coefficients and apply a model of the induced downwash
(DeLaurier, 1993; Kamakoti et al., 2000; Hedrick et al., 2002)
to the estimate of α′ . Two-dimensional force coefficients on
root-oscillating wings across a range of attack angles have not
been published, but the two-dimensional coefficients at α′=45°
are 8% greater than the three-dimensional coefficients (Birch
and Dickinson, 2001).

The effects of scale have not been measured on root-
oscillating wings at low Re (<100), although two-dimensional
results on static airfoils predict a large Re effect (Thom and
Swart, 1940). Experiments with the Drosophila wing model
show that force coefficients are stable for Rebetween 100 and
1000 (Sane and Dickinson, 2002). More surprisingly, only small

Fig. 6. Comparisons of (A) drag coefficient (CD) and (B) lift
coefficient (CL) across one stroke cycle for VM1, VM3 and VM4.
The unsteady blade-element (USBE) model results are shown with
solid lines, while the computational fluid dynamic (CFD) model
results are shown with broken lines. The rotation-advanced case
(VM1) is shown in red, the symmetric case (VM3) is shown in blue,
and the rotation-delayed case (VM4) is shown in green.
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differences in CD and, especially, CL were found for a series of
real and model wings tested at Re between 1100 and 26000
(Usherwood and Ellington, 2002b). With a more systematic
study of Re effects on wing performance, even this small Re
influence can be easily incorporated into the USBE model.

Both wing aspect ratio and the distribution of wing area
might influence wing performance, but the effects of wing-area
distribution have not been investigated. Wing aspect ratio has
only a very small effect on CL at all α′ , but the CD of lower
aspect ratio wings increases more rapidly than that of higher
aspect ratio wings as α′ increases (Usherwood and Ellington,
2002b). These results suggest that wing shape effects should
be more systematically explored and incorporated into future
studies with the USBE model.

Comparison with a rotational-coefficient model

The theoretical lift coefficient, CL=2πα′, on a wing section
at a low angle of incidence is derived from a simple algebraic
rearrangement of: 

ρU(Γt +Γh +Γr) ≈ GρcU2CL . (15)

Indeed, the small incident angle assumption reduces Equations
2 and 3 to the more familiar equations given in Fung (1993)
or Zbikowski (2002). For higher angles of incidence, the
results presented here suggest that empirically derived
coefficients as a function of α′ result in good predictions
of measured forces. An alternative to estimating a single
coefficient as a function of all three kinematic components
would be to compute a separate coefficient for each kinematic
component. Indeed, a quasi-steady model of hovering flight in
D. melanogaster using separate heave and rotational force
coefficients was developed recently (Sane and Dickinson,
2002). Rotational force coefficients were computed by
standardizing the estimated rotational force component, which
is the residual force remaining after subtracting the quasi-
steady translational force (the quasi-steady force estimated
using only the translational component of vn) from the
measured force at a point in the stroke cycle when inertial
forces are trivial. The lift for cases PM2 and PM3 estimated
by the USBE model and the rotational-coefficient quasi-steady
(RCQS) model were compared. For the RCQS model,
rotational coefficients, which are a function of both x̂o and
the non-dimensional angular velocity, ω̂=α·c̄ /γ·R (Sane and
Dickinson, 2002), were computed using a linear interpolation
between the coefficients estimated from the regression
parameters for the pair of ω̂ in table 1 of Sane and Dickinson
(2002) that bounded the instantaneous ω̂. The close match
between the USBE and RCQS curves (Fig. 7) suggests that the
empirically derived rotational force coefficients do not reflect
a contribution from the Magnus circulation, ΓM. Instead, the
close match simply indicates that the USBE and RCQS models
are simply alternative methods for incorporating the effects of
Γr into a semi-empirical blade-element model.

Rotational lift: something different or more of the same?

The rotation-dependent force that has been compared to the

Magnus effect is quantitatively explained by a model of the
same circulatory-and-attached-vortex force that also dominates
the force balance during wing translation. Indeed, if Magnus
forces are included in the model, the predicted lift and drag
peaks are much larger than the corresponding peaks estimated
from the physical wing or virtual wing (CFD) models. A recent
CFD flow reconstruction clearly shows the attached vortex
throughout the rotational phase (Sun and Tang, 2002). It
is, therefore, not surprising that the unsteady coefficients
(Dickinson et al., 1999), which reflect the augmenting effects
of an attached vortex on a translating wing, can explain the
forces occurring during wing rotation.

Why do previous quasi-steady models (with the exception
of the RCQS model of Sane and Dickinson, 2002) fail to
capture the magnitude of the rotation-dependent force? Both
the quasi-steady force of Sun and Tang (2002) and the quasi-
steady translational forces of Dickinson et al. (Dickinson et al.,
1999; Sane and Dickinson, 2001, 2002) are modeled as a
function of the angle of the chord relative to the stroke plane,
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Fig. 7. Comparisons of lift for cases (A) PM2 and (B) PM3
estimated by the unsteady blade-element (USBE) model (red line)
and a quasi-steady model that separately estimates a translational
circulatory force and a rotational circulatory force using rotational
coefficients (green line). The measured forces (blue line) are shown
for comparison.
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which is horizontal in a hovering Drosophila. The incident
flow vector, therefore, was modeled by both groups as if the
wing was not rotating. Indeed, the quasi-steady model of Sun
and Tang (2002) did not account for the changing angle of the
wing chord during rotation. But, as shown above, the incident
flow vector and corresponding α′ and circulatory force are a
function of the tangential velocity (due to rotation) of the
chordwise center of incident flow relative to the chordwise
center of rotation in addition to the translational velocity. By
accounting for this rotational component to the incident flow,
the USBE model can explain the rotation-dependent forces
occurring during wing rotation.

Comparisons of the rotation-dependent force component with
the Magnus effect, then, are misleading. While the behavior of
the rotation-dependent force component partially resembles the
Magnus effect, this behavior results from the distortion of the
boundary layer due to the changing geometry of the incident
flow and, therefore, the mechanism precisely resembles that of
a pitched wing in a uniform flow. This interpretation of the
rotation-dependent force peak occurring during wing rotation
suggests that rotational lift is not a novel aerodynamic
mechanism but is a consequence of a kinematic mechanism that
augments incident-angle-dependent circulation and the resulting
circulatory-and-attached-vortex force. Finally, this kinematic
mechanism has interesting but unexplored implications for the
evolution of wing shape, as the magnitude of the vortex force
occurring during wing rotation is a function of x̂r(r)c(r).

List of symbols
C
–

L mean lift coefficient
CL(r,t) lift coefficient of wing element
CD(r,t) drag coefficient of wing element
c(r) chord length
c̄ mean chord
dD′(r,t) circulatory drag
dDa(r,t) aft component of added mass force
dDc(r,t) aft component of circulatory force
dFa(r,t) added mass force
dFn(r,t) normal component of circulatory force
dFr(r,t) Magnus force
dFx(r,t) chordwise component of circulatory force
dL′(r,t) circulatory lift
dLa(r,t) upward component of added mass force
dLc(r,t) upward component of circulatory force
dR wing element span
h·(r,t) heaving velocity
R wing length
r radial position along wing span
r̂ non-dimensional radial position along wing span
S wing area
t time
t̂ standardized time
U fluid velocity
vn(r,t) normal velocity of wing element
v(r,t) velocity of wing element

vx(r,t) chordwise velocity of wing element
v·n first derivative of normal velocity of wing element
x̂o rotational axis
x̂i non-dimensional chordwise location of center of 

incident flow
x̂r(r) non-dimensional chordwise location of center of 

rotation
α(t) wing pitch
αg(t) geometric angle of attack
α′(r,t) angle of incidence
βn added mass coefficient
Φ(r,t) Wagner function
γ(t) azimuth position of wing
ρ fluid density
τ̂ f non-dimensional rotational timing parameter
∆τ̂ r non-dimensional duration of wing rotation
∆τ̂ t non-dimensional duration of wing translational

acceleration
Γt translational circulation
Γh heaving circulation
Γr rotational circulation
ΓM Magnus circulation
ω̂ non-dimensional angular velocity
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