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Summary
A stationary organism exposed to steady turbulent flow is subjected to a drag force that

fluctuates about a mean, and when the drag on the organism is characterized, it is
traditionally this mean force that is cited. Important information is lost, however, when
the fluctuations in drag are ignored. This is particularly true when extreme drag forces are
relevant; for instance, when predicting the survival of benthic animals on wave-swept
shores and in torrential streams, or of plants in windblown terrestrial habitats.

This study reports on the probability distribution of drag fluctuations for five objects: a
flat plate, large and small cylinders, a sphere and a limpet shell. Distributions vary
substantially among different objects exposed to the same mainstream flow; the sphere
and limpet exhibit larger fluctuations than the plate and cylinders. The distribution of
extremes in drag is used to predict the likelihood that an organism will be dislodged. For
organisms in which the applied fluid-dynamic stress is near the mean breaking stress (e.g.
some corals, trees and mussels), calculations made using the extreme drag can yield a
probability of dislodgment substantially higher than that calculated using the average.

Introduction

Water velocities in mountain streams and rain-swollen rivers may reach 9 m s21, and
the concomitant hydrodynamic forces can have important effects on the feeding, habitat
selection and survival of fluvial benthic organisms (Hynes, 1970; Vogel, 1981). Winds
may exceed 45 m s21 in severe storms, and the resulting drag forces can topple trees
(Oliver and Mayhead, 1974; Grace, 1977; Vogel, 1981). Similarly, ocean waves are
accompanied by water velocities as high as 14 m s21 and can impose substantial
hydrodynamic forces on intertidal and shallow subtidal marine plants and animals (e.g.
Koehl, 1984; Denny et al. 1985; Denny, 1988). The largest of these forces may play a role
in determining individual survivorship, species distributions, patch dynamics and the
evolution of body size and form on wave-swept shores (for reviews, see Koehl, 1984;
Seymour et al. 1989; Denny et al. 1985; Denny, 1988, 1993, 1994).

Recently, attempts have been made to predict maximal wave-induced forces by
coupling the theory of wave height distributions with empirical information regarding
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flow in breaking waves (Denny and Gaines, 1990; Denny, 1991, 1993, 1994). Application
of this method to the prediction of the ‘birth rate’ of bare patches of substratum in mussel
beds results in values that are in approximate agreement with the range found in nature
(Denny, 1993, 1994). This preliminary success bodes well for the use of fluid-dynamic
principles as predictive tools in the study of ecology.

The ultimate utility of this approach depends, however, on the accuracy with which the
stress exerted on an individual can be predicted from a knowledge of fluid velocity.
Therein lie potential difficulties.

Consider drag, a fluid-dynamic force that acts to push an object downstream. For the
high fluid velocities encountered in surf zones, terrestrial storms and mountain streams,
drag is traditionally described by the equation:

Drag = Gru∞2ApCD , (1)

where r is the density of the fluid (approximately 1000 kg m23 for fresh water,
1025 kg m23 for sea water and 1.2 kg m23 for air), u∞ is mainstream velocity relative to
the organism (measured just outside the local boundary layer surrounding the organism
and averaged over a suitable period) and Ap (the profile area) is the area of the organism
projected onto a plane perpendicular to the direction of mainstream fluid motion. CD is
the drag coefficient, an index of the effect the organism’s shape has on the pattern of flow.

In this report, I address a potential complication in the application of equation 1. Flow
in mountain streams, breaking waves and storm winds is characterized by intense
turbulence. That is, in addition to the relatively orderly flow of air or water past an
organism associated with the bulk motion of the fluid, there is a rapid fluctuation in
velocity associated with the convection of turbulent eddies (Tennekes and Lumley,
1972). Although it is reasonable to suppose that turbulent fluctuations in velocity can
affect the drag imposed on a stationary organism in otherwise steady flow, these effects
have not been fully explored.

The standard technique for measuring time-averaged drag in turbulent flow is as
follows. The organism in question (or a model of it) is attached to a force transducer and
placed in flow of known average mainstream velocity. The resulting voltage output from
the transducer (which is proportional to the force) fluctuates about some mean value as
the transducer responds to the drag imposed by the instantaneous flow around the
organism. The mean voltage is viewed as the drag signal, and the fluctuations in voltage
are viewed as ‘noise’. It is convenient to rid the voltage signal of this noise by
mechanically damping the transducer using a dashpot or by passing the voltage signal
through a low-pass filter (either electronic or numerical) with a cut-off frequency well
below the dominant frequency of the noise. A clean measure of the time-averaged force
corresponding to a given mean velocity is thereby obtained.

Unfortunately, the mean drag may not be the most biologically relevant value in a surf
zone, mountain stream or gale. Rather, it is the maximal drag that is likely to be of
importance in determining whether an organism will be broken or dislodged. By low-pass
filtering the output from a transducer, information regarding the maximal drag force is
lost.

I report here on measurements of extreme drag forces in unidirectional turbulent flow,
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the relationship between these extreme values and their corresponding means, and the
potential biological consequences of these results.

Materials and methods

Drag was measured on five objects: an acrylic plastic sphere (2.17 cm in diameter), two
acrylic plastic cylinders (one 1.11 cm in diameter, 4.04 cm high; the other 0.63 cm in
diameter, 2.25 cm high), a thin aluminum plate oriented broadside to flow (0.89 cm wide,
3.03 cm high, 0.16 cm thick) and a limpet shell (Lottia pelta Rathke, 1.43 cm high,
3.03 cm long, 2.50 cm wide) oriented broadside to flow with its right side upstream. The
nonbiological objects were lightly sanded with 400 grit paper to provide a uniform
surface texture.

Drag measurements were conducted in a unidirectional flow tank with a working
section 10 cm square (Denny, 1988; Carrington, 1990). During the measurement of drag
fluctuations, the mean mainstream velocity was 3.04 m s21, measured using a Pitot tube
outside the boundary layer and a static port in the wall of the tank’s working section. In an
additional set of experiments, u∞ was varied from 2.0 to 3.5 m s21 to allow CD to be
measured as a function of velocity.

To characterize the boundary layer at a mainstream velocity of 3.04 m s21, the velocity
near the wall was measured (again using the Pitot tube, diameter 1.1 mm) at increments
from the wall of approximately 0.6 mm. In a typical turbulent boundary layer over a
smooth wall (such as that found in these tests), the time-averaged velocity at a distance z
from the wall is (for the inner 20 % of the boundary layer):

u(z) = (u*/k)ln(z/z0) , (2)

where u* is the friction velocity, k is von Kármán’s constant (k=0.41) and z0 is the
roughness height (Schlichting, 1979; Middleton and Southard, 1984). Thus, the slope of a
plot of time-averaged velocity as a function of the natural logarithm of distance from the
wall equals u*/k, from which u* itself can be calculated. The friction velocity is defined to
be:

u* ≡ <u9w9>1/2 , (3)

where u9 is the deviation from the mean of the velocity parallel to the wall (the velocity
fluctuation of interest here) and w9 is the deviation from the mean of the velocity
perpendicular to the wall (Schlichting, 1979; Middleton and Southard, 1984). The
angular brackets (<>) denote that the temporal average is taken of the product u9w9; thus,
u* depends both on the magnitudes of u9 and w9 and on their correlation. The degree of
correlation between u9 and w9 can be expressed as the coefficient of correlation F:

In turbulent boundary layers, the maximal correlation coefficient for u9 and w9 is about
0.4 and √<w92> ≈ u* (Schlichting, 1979). As a result, the average deviation in velocity
near the wall, u9rms (=√<u92>), is approximately 2.5u*, and the measurement of u* thus

(4)
<u′w′>

<u′2>
.F =

! <w′2>!
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provides a method of estimating the magnitude of turbulent fluctuations in velocity in the
direction of flow. For a verification of this effect under field conditions, see Williams
et al. (1989).

Drag was measured using the transducer described by Carrington (1990). The object to
be tested was attached to a circular plate held flush with the ceiling of the working section
by parallel stainless-steel beams. Any force applied to the plate along the direction of flow
resulted in a deflection of the beams, the deformation of strain gauges glued to the beams
and, ultimately, a voltage signal. The resonant frequency of the transducer was
approximately 59 Hz, and the beams were underdamped. To avoid complications from
resonant vibrations of the transducer, its voltage signal was electronically low-pass-
filtered to approximate that of a slightly overdamped beam. With this simple RC filter in
place, the transducer responded to the instantaneous release of a statically applied force
with a rapid decay in its voltage signal and no overshoot past the zero-force voltage. The
time constant of this response was approximately 0.024 s.

The transducer’s response time can be compared with the period of velocity fluctuations
expected for flow in the vicinity of the test objects. Ideally, these fluctuations would be
measured directly, using a hot-wire anemometer or a laser Doppler velocity meter.
Lacking these tools, I instead estimated the period of fluctuation in two, indirect ways.

First, the size of the most energetic eddies in boundary-layer turbulence is
approximately equal to the distance from the substratum at which the velocity
fluctuations are measured (Schlichting, 1979; Tennekes and Lumley, 1972). For the
objects used in these experiments (height 1.4–4 cm), the relevant length scale for the
turbulence is thus 1.4–4 cm. One would expect that the spectrum of velocity fluctuations
would have a broad peak at a period equal to this length scale divided by the average
mainstream velocity (3.04 m s21); that is, a period of approximately 0.003–0.013 s.

Alternatively, objects in flow could respond primarily to the velocities caused by
turbulent ‘sweeps’ as energetic eddies are convected near to the wall. The interval T
between sweeps may be as short as:

T = 2.5d/u∞ , (5)

where u∞ is the time-averaged mainstream velocity and d is the boundary-layer thickness
(Cantwell, 1981). In these experiments, d≈1.2 cm (see Results), suggesting that the
interval between sweeps may be as little as 0.01 s.

Both of these approaches suggest that the maximal fluctuations in water velocity are
likely to be applied for a period shorter than the response time of the transducer (0.024 s)
and therefore suggest that the transducer may underestimate the maximal drag
experienced by rigid biological objects. It should be noted, however, than many
biological objects are not rigid. The shell of a snail or limpet is supported on a muscular
foot that results in some compliance in the presence of flow. The bodies of insects that
inhabit torrential streams are similarly held in place by compliant appendages. Trees,
grasses, gorgonians, anemones and many macroalgae are more compliant still. Thus,
though the transducer used in these experiments may underestimate the maximal drag
that would be experienced by a rigid organism, it may also overestimate the maximal drag
felt by flexible organisms. In this respect, the transducer used here was chosen as a
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practical compromise. The potential consequences of its response time will be discussed
below.

The transducer was calibrated prior to each experiment using standard weights, and a
measure of the temporal running average of drag was obtained by filtering the transducer
output using a separate low-pass RC filter with a time constant of approximately 1 s. All
drag measurements were corrected for the small amount of friction drag acting on the
exposed area of the mounting plate.

The drag imposed on each test object was recorded for 1000 s on a Gould model 220
two-channel oscillographic chart recorder. This recorder is capable of accurately
recording full-scale deflections with frequencies up to 60 Hz, well in excess of the
frequencies produced by the force transducer. The simultaneous drag records (both
‘noisy’ and averaged) were subsequently divided into 50 contiguous 20 s intervals, and
the maximal force, Fmax, encountered in each interval was noted for the ‘noisy’ signal.
For each interval, the maximal force was then expressed as a fractional deviation from the
simultaneously recorded averaged force (Favg). This normalized deviation (Fn) is:

Fn = (Fmax/Favg) 2 1 . (6)

The cumulative probability distribution of normalized deviations was then estimated.
Values for Fn were ranked in ascending order, the smallest having the rank 1. The
probability, P(Fn), that the extreme drag in a randomly chosen interval is less than Fn is
given by:

P(Fni) ≈ i/(N + 1) , (7)

where N is the total number of intervals examined (in this case, 50) and i is the rank of the
force (Gumbel, 1958). Ties between or among separate measurements of Fn are assigned
an average rank. The cumulative probability distribution to which this empirical curve
asymptotes was then estimated using a three-parameter model suggested by Jacocks and
Kneile (1975):

P(Fn) = exp2{[(a 2 bFn)/(a 2 be)](1/b)} , (8)

where P(Fn) is the probability that the extreme normalized deviation in drag in a randomly
chosen interval is less than Fn. a determines how fast P(Fn) rises with the logarithm of
time and e is the modal (that is, the most probable) value of Fn. The coefficients in this
equation were determined using a maximum likelihood criterion and an iterative,
nonlinear curve-fitting routine (see Gaines and Denny, 1993, for details). This model is
extremely flexible in its ability to fit cumulative probability curves (see Jacocks and
Kneile, 1975; Sarpkaya and Isaacson, 1981). When a and b are both positive, the model
takes one form of an extremal (or Gumbel) type III distribution, known as the Weibull
upper bound distribution. When b is negative, the model has the general form of an
extremal type II distribution (also known as a Fisher-Tippet, Cauchy, Fretchet type II or
Gumbel type II distribution), with the precise form depending on the sign of a. If b
approaches zero, the model asymptotes to an extremal (or Gumbel) type I distribution.

Note that if a and b are both positive and Fn=a/b, then P(Fn)=1. In this case, if the
model of equation 8 holds, it is absolutely certain that the extreme force in a randomly
chosen interval is less than Fn. Thus, when a and b are both positive, their ratio provides
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an estimate of the expected absolute maximal normalized deviation in drag. If b is
negative, a well-defined maximal Fn is not predicted by this analysis.

From the cumulative probability curve for Fn, the likelihood of encountering a given
normalized extreme force can be calculated as a function of the time for which the object
is exposed to flow. The expected time an organism must wait between occurrences of a
given extreme (the return time, Tr; Gumbel, 1958) is:

Tr = ti/[1 2 P(Fn)] , (9)

where ti is the length of the interval used in the analysis (here, ti=20 s).
Conversely, if the time for which the organism is exposed to flow (that is, the maximal

return time Trmax) is known, the expected extreme Fn can be predicted from equation 9
and the inverse of equation 8:

Fn = (a/b) 2 ^[(a/b) 2 e]{2ln[1 2 (ti/Trmax)]}b& . (10)

At any particular velocity, the likelihood of encountering a given extreme Fn increases
with time.

Results

Turbulence and boundary-layer characteristics

Flow in the working section was substantially turbulent as shown by the velocity
gradient adjacent to the substratum (Fig. 1A), which has a shape typical of turbulent
boundary layers. When this boundary-layer profile is replotted (Fig. 1B), it closely
approximates the logarithmic profile expected for the near-substratum portion of a well-
developed turbulent boundary layer. The friction velocity estimated from the profile
shown in Fig. 1B is approximately 0.199 m s21, 6.6 % of the mainstream velocity.

The boundary layer thickness (d), defined as the distance from the substratum to the
height at which u(z)=0.99u∞, was approximately 1.2 cm.
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Fig. 1. The boundary-layer profile characteristic of these experiments. (A) The profile itself.
The solid curve is a logarithmic fit to the 16 data points taken closest to the wall. (B) The data
from A logarithmically transformed. The slope of the solid regression line is equal to the
friction velocity (u*) divided by von Kármán’s constant, 0.41.
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Drag measurements

The drag coefficients for the test objects (Fig. 2) vary negligibly across a wide range of
velocities.

At a mainstream velocity of 3.04 m s21, all objects showed measurable deviations in
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Fig. 2. Drag coefficient as a function of velocity for the objects used in this study. Within a
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coefficient. Solid lines are third-order polynomial regressions for the entire data set for each
object.
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Fig. 3. Representative recordings of drag for the objects with the smallest variation (the large
cylinder) and the largest variation (the limpet). The vertical scale shows 20 % of the average
drag recorded for the two objects, and the horizontal line marked ‘average’ is drawn at the
level of the average force.



drag force from the mean (for examples, see Fig. 3), and the extent of these deviations
varied among objects (Fig. 4; Table 1). For instance, the most likely (modal) maximal
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Table 1. Coefficient values from the maximum likelihood estimates for a model of the
probability distribution of maximal and minimal drag forces (see equation 8)

Absolute
maximum

Object a ASE b ASE e ASE Fn S.E.M.

Large 0.016 0.012 0.018 0.183 0.060 0.003 0.860 0.590
cylinder

Plate 0.023 0.008 0.099 0.103 0.068 0.004 0.234 0.154
Small 0.012 0.013 0.041 0.147 0.082 0.002 0.301 0.790

cylinder
Sphere 0.017 0.028 0.005 0.166 0.161 0.004 3.160 0.731
Limpet 0.001 0.033 −0.110 0.180 0.182 0.005 Undefined −

Standard errors for a, b and e are renormalized asymptotic standard errors (ASE).
The standard errors for the ratio a/b (an estimate of the absolute maximum Fn) were calculated using

a bootstrap algorithm (Efron and Tibshirani, 1993).
Fnmax, the absolute maximum Fn, could not be defined for the limpet because of the negative value of

b; see text for further explanation.



drag exceeded the mean by only 6–8 % in the cylinders and the flat plate (e=0.060 for the
large cylinder, 0.068 for the flat plate, 0.082 for the small cylinder). In contrast, the modal
maximal drag on the sphere exceeded the mean by approximately 16 % (e=0.161) and the
modal maximal drag on the limpet shell exceeded the mean by over 18 % (e=0.182).
Estimates of return times for Fn are shown in Fig. 5.

It is expected that the absolute maximal drag experienced by a flat plate is 23 % greater
than the mean (a/b=0.234, Table 1), while that of a cylinder is 30–86 % greater than the
mean (depending on the size of the cylinder). In contrast, the expected absolute maximal
drag experienced by a sphere is much larger, 316 % of the mean. There is no well-defined
limit to the maximal drag that may be experienced by a limpet (b is negative).

Discussion

Cause of drag fluctuations

The experiments performed here clearly demonstrate that drag can vary substantially
for stationary objects in turbulent flow and that the magnitude of this fluctuation varies
among objects. The experiments were not designed to elucidate the causes of drag
fluctuation. Nonetheless, inferences can be drawn from the data.

There are three mechanisms that could conceivably contribute to the observed
fluctuations in drag. (1) Turbulent fluctuations in ambient velocity result in fluctuations in
the dynamic pressure imposed on the object and, thereby, in fluctuations in drag. (2) As
eddies are shed from the object, fluctuations in the object’s wake result in a variation in
the upstream–downstream pressure difference across the object and, thereby, in a
variation in drag. (3) A drastic variation in drag coefficient occurring over the range of
velocities associated with the convection of turbulent eddies could result in substantial
variation in drag. For instance, if the boundary layer of the object were near the transition
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from laminar to turbulent, a small fluctuation in ambient velocity would result in a large
fluctuation in drag (see Vogel, 1981).

This last mechanism can be discounted because CD varies negligibly across a wide
range of velocities centered on the mainstream velocity used in these experiments
(Fig. 2). It is likely, however, that both of the remaining mechanisms (fluctuations in
ambient velocity, fluctuations in the wake) contribute to variation in drag, and evidence to
this effect can be gleaned from the data.

To evaluate the role played by turbulent fluctuations in ambient velocity, I rely on
indirect evidence based on u* (a time-averaged index of turbulence) and the similarity
between the flow in these experiments and that in a classic set of measurements
conducted by Reichardt (1938) and discussed by Schlichting (1979). In a turbulent
boundary layer with u* equal to 5 % of the mainstream velocity, Reichardt found that the
root mean square velocity deviation u9rms was largest very near the substratum (at 0.07d,
just above the viscous sublayer) and equal to 2.6u*. u9rms decreased farther from the wall
until, at the top of the boundary layer, u9rms≈u* (Fig. 6). Averaged over the boundary
layer, u9rms=1.19u*. I assume that the relationship between u9rms and u* found by
Reichardt (1938) is similar to that in the boundary layer present during these
experiments. Comparable results have been obtained in other studies (e.g. Laufer, 1950;
Pai, 1953).

Given this assumed similarity and using the friction velocity measured during these
experiments (6.6 % of u∞), the average fluctuations in velocity in the experiments
performed here are expected to reach a maximum of 2.636.6 %=17.2 % of u∞ very near
the wall. For an object with all its exposed area centered at the top of the viscous sublayer,
this would result in an average fluctuation in drag of 37.4 % of the mean [drag is
proportional to the square of velocity (equation 1) and 1.1722=1.374]. An object whose
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area was spread uniformly across the boundary layer (such as a cylinder or rectangular
plate) would experience an average fluctuation in velocity of 1.1936.6 %=7.9 % and an
average fluctuation in drag of 16.3 %. Objects extending above the boundary layer would
experience smaller fluctuations in velocity (averaged across their exposed area) and
smaller fluctuations in drag. Note that the estimates made here are for average
fluctuations in drag; maximal fluctuations will be larger by an amount that cannot be
specified without precise knowledge of the frequency and spatial characteristics of
extreme velocity deviations.

Several aspects of the data presented here are indeed in accordance with these
expectations. First, the sphere (2.17 cm in diameter) and limpet (1.43 cm high) do not
extend much beyond the boundary layer (which is approximately 1.2 cm thick) and their
modal maximal drags (16 % and 18 % greater than the mean, respectively, Table 1) fall
near the value for the average deviation in drag predicted above (16.3 % for an object just
spanning the boundary layer).

Note, however, that this is a comparison between a mean and a maximum. Because the
maximal deviation must be larger than the average, any meaningful similarity between
the measured maximal and predicted mean forces depends on the response characteristics
of the drag transducer. Recall that the most energetic fluctuations in mainstream velocity
(those that would lead to the maximal drag) are likely to be applied for a period of
approximately 0.01 s, unfortunately too short a time to be measured accurately by the
transducer used here (response time 0.024 s). As a consequence, it is possible that the
maximal applied drags are attenuated by the transducer just enough to be similar to the
mean values predicted. Without fuller knowledge of the frequency spectrum of applied
drags, it is impossible to evaluate this critically, however, and it is quite possible that the
similarity between measured maximal and predicted mean values for the sphere and
limpet is merely coincidental.

Further evidence for the role of ambient velocity fluctuations is found in the fact that
the tallest objects used in these experiments (the large cylinder, 4.04 cm high, and the flat
plate, 3.03 cm high) show the smallest variation in drag (e, Table 1), as would be
expected from the spatial gradient in u9rms shown in Fig. 6. In addition, the small cylinder
has a higher modal maximal normalized drag than the large cylinder (8.2 % versus 6.0 %
greater than the mean).

Note, however, that the modal maximal Fn of the small cylinder (although higher
than that of the large cylinder) is much smaller than that of the sphere (8.2 %
versus 16.1 %), which has virtually the same height (small cylinder, 2.25 cm; sphere
2.17 cm). This disparity between objects of the same height suggests that the shape of
the object (as well as its size) plays a role in determining the magnitude of drag
fluctuations.

In summary, the results obtained here are consistent with the hypothesis that variation
in drag in turbulent flow is caused by a combination of two mechanisms: (1) fluctuations
in ambient velocity as turbulent eddies are convected past an object (a mechanism for
which the size of the object relative to the boundary layer thickness is important) and (2)
fluctuations in wake pressure as eddies are shed (a mechanism in which the shape of the
object is important). Further investigation of these mechanisms will require direct,
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simultaneous measurements of both the local fluctuations in ambient and wake velocities
and the instantaneous drag imposed on an object.

Biological consequences

Of what biological importance is the variation in drag measured here? The most obvious
consequence concerns the likelihood that an organism will be dislodged or broken: the
larger the drag, the greater the probability of breakage. But the relationship between an
increase in drag and the consequent increase in breakage is not necessarily linear. That is, a
10 % increase in drag could, under certain circumstances, lead to only a 2% increase in
breakage while under other circumstances leading to a 50 % increase. This nonlinearity
complicates the interpretation of the effects of drag, and is briefly explored here.

When drag is imposed on an organism, stress is placed on its structure. If the imposed
stress exceeds the strength of the most susceptible element of the structure, the organism
is broken or dislodged. Until a structure is actually broken, however, its strength can only
be described in a probabilistic fashion (Alexander, 1981; Denny, 1988). The chance
nature of breakage can be conveniently quantified as a graph of the cumulative
probability of breakage as a function of applied stress; a typical example is shown in
Fig. 7. Below a certain applied stress (in this hypothetical case, about 0.3 arbitrary units),
the probability of breakage is very low and an increase in applied stress results in a
negligible increase in the risk of breakage. The same is true for very large applied
stresses: if a given stress results in a 99 % probability of breakage, increasing the applied
stress cannot lead to any substantial increase in risk. Stated in another way, at very low or
very high applied stresses, the slope of the cumulative probability curve is small.

Near the median breaking stress (the stress that results in a 0.5 probability of breakage),
the slope of the curve is greatest and the increase in probability of breakage associated
with an increase in applied stress is maximal. In this region, the slope of the curve is very
sensitive to the variation in strength found in the population; the less variable the strength
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(the smaller its standard deviation), the less the ‘spread’ in the cumulative probability,
and the steeper is the curve. Given a small standard deviation, a small increase in stress
near the median can result in a large increase in risk.

It is apparent, then, that the increase in the risk of breakage associated with the
maximal (as opposed to the mean) drag depends on three factors: (1) the fractional
increase in drag, (2) the location of the mean applied stress on the cumulative probability
curve, and (3) the standard deviation of the strength distribution.

Let us assume that we have measured the strengths exhibited by a given population of
organisms and can express the stress required to break each organism as a fraction, S, of
the mean breaking stress of the population. Here, I assume that the distribution of S is
Gaussian, a simplifying assumption based on evidence from a variety of intertidal algae
and invertebrates (Gaylord et al. 1994; M. W. Denny, unpublished data). Given this
assumption, the probability that an organism chosen at random from the population has a
strength less than or equal to S is:

where s is the standard deviation of the distribution (Zar, 1974). Note that, because we
have normalized stress to the population mean, the mean normalized stress is equal to 1
and the coefficient of variation (CV, s divided by the mean) is therefore equal to the
standard deviation.

The organism is now exposed to flow that is characterized by a mean velocity and rapid
turbulent fluctuations about this mean. In nature, the mean velocity itself may vary
through time (a complication discussed below), but we assume that the variation in the
mean is very slow compared with the high-frequency fluctuations due to turbulence,
allowing us to calculate a reasonable mean velocity for a given period. This mean velocity
results in a mean drag which, in turn, places a normalized stress, Smean, on the organism’s
structure. The maximal drag, however, imposes a larger stress, Smax, which (unlike Smean

within the period of measurement) is a function of time (see equation 10). The difference
in probability of dislodgment between that due to the maximal and mean drags, R:

R = P(Smax) 2 P(Smean) , (12)

is the increase in the predicted risk of dislodgment or breakage associated with the
observed fluctuation in drag for the given period. The magnitude of R depends on Smean,
on Smax (and thus time) and on the distribution of S, indexed by its coefficient of variation.

In a 1 h exposure to turbulent flow with a constant mean, the limpet examined in this
study has an expected maximal drag that exceeds the mean by 33 % (equation 10), a value
we use as a heuristic example. The increase in risk, R, associated with the imposition of
this maximal force (rather than the mean force) is:

R = P(1.33Smean) 2 P(Smean) , (13)

shown in Fig. 8 as a function of Smean for a range of coefficients of variation. As noted
above, the increase in risk of breakage or dislodgment is relatively small unless the stress

(11)
⌠

⌡

S

0

P(S) = exp − dx ,
















1

s 2p!
(x −1)2
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applied by the mean drag is near the mean (=median) strength of the population (S=1).
For Smean less than about 0.4 or greater than 1.8, there is little increase in risk caused by a
33 % increase in drag.

In contrast, when the stress applied by the mean drag is near the mean strength (Smean is
near 1), the additional risk associated with fluctuations in drag can be quite high. For
example, the maximal increase in risk associated with a 33 % increase in drag is
approximately 80 % if the coefficient of variation is 0.1 (Fig. 8). This amplification of the
effect of increased drag depends, however, on the coefficient of variation. For Smean

110 M. W. DENNY

0.8

0.6

0.4

0.2

0

Fr
ac

tio
na

l i
nc

re
as

e 
in

 r
is

k,
 R

0 0.5 1.0 1.5 2.0

0.5 0.6

0.4

0.3

0.2

Coefficient of
variation = 0.1

Maximum drag
Average drag

= 1.33

Mean applied stress/mean breaking stress

Fig. 8. The imposition of a maximal drag results in an increase in the risk of dislodgment R
above that predicted for the imposition of the mean drag. The magnitude of this increase is
shown as a function of the ratio of mean drag-imposed stress to the population mean breaking
stress, Smean.
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values near 1, the larger the CV, the smaller the increase in risk associated with an
increase in drag (Fig. 9).

Where on Fig. 8 has nature placed real benthic organisms? It is likely that most sessile
organisms are sufficiently well adapted to their surroundings that they face little day-to-
day risk of breakage from fluid-dynamic forces (Vogel, 1981; Denny, 1988). In these
cases (Smean<0.5), the increase in risk due to fluctuations in drag is likely to be small.

Under certain conditions, however, stationary organisms may be placed under fluid-
imposed stresses that fall near the population’s mean strength (on the steep portion of
their cumulative probability curves), and the effects of any increase in drag could be
amplified. For example, Tunnicliffe (1981) found that 80 % of a population of staghorn
coral (Acropora cervicornis) had broken at their base, equivalent to an Smax of 1.21 if the
strength of these corals is normally distributed. Data presented by Putz and Milton (1982)
and Putz et al. (1983) suggest that, in a lifetime of 50–100 years, a tree in a tropical forest
has a 34–54 % chance of uprooting or snapping; damage caused, at least in part, by wind
loading. These probabilities are equivalent to an Smax of 0.85–1.04. Paine and Levin
(1981) report that as many as 41–63 % of the mussels (Mytilus californianus) present on a
shore can be dislodged in a single winter, equivalent to an Smax of 0.93–1.11. In these
cases, Smean (which will be somewhat less than Smax) may fall near 1, and it is possible
that any increase in maximal drag would result in an amplified response in the probability
of breakage.

The coefficients of variation for these species are large, however. The CV for
A. cervicornis is 0.25 (Denny, 1988), for the trees examined by Putz and Milton (1982)
the CV of wood strength was 0.38 (Putz et al. 1983), and for mussels at the site used by
Paine and Levin (1981), the CV of attachment strength was 0.32 (Denny et al. 1985). In
all of these cases, CV values are large enough to reduce or negate the amplification of risk
due to increased drag: a 33 % increase in drag would result in a maximal 35–50 %
increase in risk of breakage. It is conceivable that these organisms have ‘hedged their
bets’ in terms of drag-induced breakage by presenting to the environment a wide range of
strengths.

It should be noted that there is likely to be a cost associated with the production by an
individual coral, tree or mussel of progeny with a large CV of strength. The wider their
spread in strength, the larger the fraction of these offspring that is poorly designed to
resist drag. The very weak individuals are likely to be broken before they reproduce and
the very strong individuals may have a lower reproductive output because of the
additional material and energy expended in becoming overly strong.

A scenario can thus be envisioned in which an optimal CV exists for the persistence of
a given species in a given environment. Too small a CV means that chance variation in
applied stress (such as that documented here for drag) will result in a greatly amplified
risk of breakage. Too large a CV entails the cost associated with misallocation of
resources in unnecessarily strong individuals.

Unfortunately, sufficient data do not exist for a critical examination of this proposition.
Coefficients of variation in strength have been measured for only a few sessile organisms,
and these are highly variable. For example, the CVs reported for corals range from 0.25 to
0.73 (Chamberlain, 1978; Vosburgh, 1982; Denny et al. 1985; Denny, 1988). The
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adhesive strengths of limpets have CVs that vary between 0.15 and 0.93 (Branch and
Marsh, 1978; Grenon and Walker, 1981; Denny et al. 1985; Denny, 1989; Hahn and
Denny, 1989). Snails exhibit adhesive strengths with CVs that vary from 0.19 to 0.66
(Miller, 1974), and the strengths of various benthic algae have CVs that vary from 0.22 to
0.88 (Koehl and Wainwright, 1977; Denny et al. 1989; Kraemer and Chapman 1991).
Barnacles have a smaller range, 0.3–0.53 (Yule and Walker, 1984; Denny et al. 1985),
but this may simply be due to the smaller number of species on which measurements have
been conducted.

In summary, the effects of drag fluctuations on survival depend on the magnitude of the
mean imposed stress relative to the mean strength, on the ratio of maximal to mean drag
(a function of time) and on the coefficient of variation of strength. All of these values vary
in nature, but cases exist in which drag fluctuations are likely to result in a substantial
increase in the risk of breakage or dislodgment.

Variability in drag of the type described here may also have important effects on the
evolution of safety factors in organisms susceptible to dislodgment by this fluid-dynamic
force. Here, safety factor is defined as the ratio of the predicted strength of an organism
(that is, the mean strength of the population) to the predicted maximal force that the
organism will experience. Alexander (1981) and Lowell (1985, 1987) note that increased
environmental variability (of which drag may be an important component) is expected to
result in the evolution of an increased safety factor, and Lowell (1987) presents evidence
that safety factors can indeed evolve in response to the environment. In the present
context, one would expect that the observed fluctuations in drag may set a lower limit to
the appropriate safety factor for stationary organisms exposed to flow. Shapes or sizes of
organisms that have a relatively large maximal drag (such as the limpet tested here)
should have relatively large safety factors in the structures affected by drag.

Note that the calculations leading to Figs 8 and 9 assume a Gaussian distribution of
strengths. A non-normal distribution would lead to quantitatively different results, but the
deviation from normality would have to be large to change the results qualitatively.

Note also that the hypothetical examples cited here have assumed an increase in drag of
33 % above the mean, a value appropriate for a limpet exposed to flow for 1 h. Longer
exposures would lead to more extreme drags (Fig. 5) and larger increases in risk than
those discussed here.

Variations in mean velocity

The turbulence-induced increases in drag discussed here have been measured relative to a
mean drag that, for simplicity, has been assumed to be constant. In nature, the mean velocity
in a turbulent flow (and hence the mean drag) is very likely to change through time. In times
of flood, the mean velocity in a stream or river will be higher than in times of drought; the
mean wind velocity will be higher in storms than on calm days. The flow beneath ocean
waves is an extreme case. On a wave-swept shore, the bulk velocity of water oscillates with
a typical period of 4–10s, and the separation of a mean velocity from the turbulence-
induced fluctuations can be problematic. In many of these cases, the variation in drag due to
variation in the mean velocity may be larger than the variation due to turbulence.

It is important to note, however, that the two sources of variation are additive. During a
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period when mean drag is high, the maximal drag on an object will be higher still due to
the effects of turbulence explored here. Regardless of any variation in mean velocity, the
accurate prediction of maximal drag requires that attention be paid to the effects of
turbulence.

For a discussion of a method by which the maximal mean velocity can be predicted for
a given environment, see Denny (1988, 1991, 1993, 1994) and Gaines and Denny (1993).

Caveats

It must be stressed that the probabilities of observing a given maximal drag presented
here apply only to the particular flow conditions of these measurements, to the particular
objects used in these experiments and to the particular compliance of the transducer. It
remains to be seen whether the results for these specific objects can be generalized to
different velocities and different intensities of turbulence, and it may be that other objects
will show different variation in their extreme drags even under conditions identical to
those used here. Furthermore, as discussed above, very rigid objects in nature are likely to
experience more extreme forces than those recorded here, just as objects mounted on a
more rigid force transducer would. In this respect, it would be advantageous to repeat the
experiments conducted here using a variety of live organisms mounted on a very stiff
force transducer. In this fashion, the compliance of the organism itself (rather than that of
the transducer) would control the ‘filtering’ of turbulence-induced forces.

This report describes forces in steady unidirectional flow, and care must be taken if
these results are to be extrapolated to other situations. For example, if the mean flow
velocity varies slowly through time (owing to factors other than turbulence), the period
used to calculate the mean velocity may affect the results. If the period chosen is too long,
several fluctuations in the mean may be included, and these fluctuations may appear, to
the present method of analysis, as an increase in the turbulence-induced deviations in
force. It was to avoid the possibility of this error that the maximal drags measured in these
experiments were compared with an electronically filtered instantaneous mean
(essentially a running mean of forces within 1 s of the time when the maximum was
measured) rather than with the mean drag for the entire measurement period. Special care
should be exercised if the results decribed here are to be applied to cases where the
direction (as well as the velocity) of mainstream flow varies through time. For example, it
is unclear what effect the wake of an object will have when, after a shift in the direction of
flow, it is carried back past its origin.

As a further complication, drag is only one of several hydrodynamic forces acting on
benthic organisms. Lift, like drag, results from the pressure distribution around an
organism (Vogel, 1981; Denny, 1988, 1989) and may perhaps show a similar pattern of
extremes in turbulent flow (Willets and Murray, 1981). The behavior of accelerational
forces is much more complicated than that of drag or lift (Denny et al. 1985; Denny,
1988; Gaylord et al. 1994), and it is premature even to speculate on how these forces
interact with turbulence. Until we have a better understanding of each of these forces
separately and of their interaction under field conditions, the prediction of the biological
effects of hydrodynamic forces will remain an inexact science.

In conclusion, the maximal drag imposed on a stationary organism in turbulent flow
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exceeds the mean drag by an amount that depends both on the shape and size of the object
and on the time for which the object is subjected to flow. For example, the maximal drag
imposed on a sphere under the conditions used in these experiments is likely to be 16 %
greater than the mean in an exposure of only 20 s and may reach values greater than three
times the mean during lengthy exposures. The extreme drags imposed in turbulent flow
can result in substantially greater dislodgment and breakage of stationary organisms than
would be predicted from the mean drag. It would therefore be dangerous to predict the
biological consequences of fluid-dynamic forces without taking into account the
stochastic variation of these forces in turbulent flow.

The magnitude of drag variation for a given organism is likely to depend on the
intensity of turbulence, the size of the organism relative to the boundary-layer thickness
and the shape of the organism. Further research is required, however, to explore the
precise mechanism(s) that cause the observed variation in drag and to extend the
observations made here to a wider variety of flows.

I thank B. Gaylord, E. C. Bell, K. Mead, C. A. Butman, B. Hale and two anonymous
reviewers for helpful comments on the manuscript. This work was supported by NSF
Grant OCE-9115688.
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