
exposure song type, test stimulus, and their interaction as potential explanatory 

factors. 

Results  

Experiment 1 

All ZENK data are reported as the average number of ZENK-ir cells / 

sampling frame (1.66 x 1.24 mm) and ± standard error. With respect to NCM, we 

detected greater ZENK-ir density in response to conspecific chatter (mean = 693.42 

± 102.51) versus heterospecific sound exposure (mean = 335.18 ± 79.30 cells; 

negative binomial regression; F1,22 = 20.8; p = 0.0001; fig. 4). No difference in ZENK-

ir densities within the NCM was detected between first-year juveniles (mean = 

573.85 ± 99.56 cells) versus adults (mean = 454.75 ± 76.25 cells; F1,22 = 3.2; p = 

0.085), and there was no interaction between type of sound exposure and age 

category (F1,22 = 1.16; p = 0.292).  

With respect to CMM, mean ZENK-ir density was also found to be greater in 

response to conspecific chatter (mean = 502.51 ± 75.29 cells) versus heterospecific 

sound exposure (mean = 315.60 ± 80.36; negative binomial regression; F1,22 = 7.9; p 

= 0.009; fig. 4). No difference in ZENK-ir densities within the CMM was detected 

between first-year juveniles (mean = 439.95 ± 95.94) versus adults (mean = 378.15 

± 59.7; F1,22 = 2.29; p = 0.144). However, there was a significant interaction between 

auditory treatment and age (F1,22 = 7.81; p = 0.01), whereby adults exhibited a 

greater response to conspecific chatter (mean = 563.74 ± 55.56) versus 

heterospecific sound exposure (mean = 192.56 ± 63.86), yet juveniles were 

observed to have nearly identical ZENK-ir densities in conspecific chatter (mean = 

441.27 ± 95.02) versus heterospecific sound exposure (mean = 438.63 ± 96.86). 

  

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

dv
an

ce
 a

rt
ic

le



 

Experiment 2 

ZENK-ir did not significantly differ in NCM as a consequence of recent song 

exposure (F1,19 = 1.16; p = 0.295; fig. 5) or stimulus type (F1,19 = 1.13; p = 0.30; fig. 

5). There was no significant interaction between previous song experience and song 

type (F1,19 = 2.4; p = 0.13; fig. 5). In contrast, ZENK-ir density exhibited a significant 

interaction between previous song experience and song type in CMM (F1,19 = 14.1; p 

= 0.001; fig. 5) whereas there was no significant difference in ZENK-ir in relation to 

previous song experience (F1,19 = 0.3; p = 0.58; fig. 5) or song type (F1,19 = 0.3; p = 

0.58; fig. 5). Results of post-hoc analysis for each comparison in this experiment are 

listed in table 1.  

 

Discussion  

The results presented here assess the neural basis of acoustically-cued brood 

parasitic species recognition in cowbirds and identifies a neural representation of the 

chatter call, which serves as a signal that reliably identifies conspecifics. Specifically, 

we demonstrate that auditory forebrain regions that respond selectively to learned 

vocalizations, such as conspecific songs in parental (Woolley et al. 2010) and brood 

parasitic (Louder et al., 2016) songbirds, also respond selectively to the non-learned 

chatter in parasitic cowbirds. The chatter-selective IEG induction occurs in both NCM 

and CMM regions in adults and within NCM in the juveniles. These results reveal a 

selective neural representation of this non-learned vocalization within NCM in 

juvenile male cowbirds that is malleable across juvenile and adult stages (table 2). In 

contrast, we demonstrate that juvenile cowbirds do not exhibit song-selective 

responses in these auditory forebrain regions unless they are provided recent 
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experience with songs. However, the song that the juvenile cowbird hears during 

playback appears to have little effect on activity-dependent gene induction in the 

auditory forebrain as juvenile cowbirds provided recent prolonged exposed to 

conspecific and heterospecific exhibit elevated gene induction to the song with which 

they are familiar (table 2). Consequently, we see a neural signature of imprinting in 

juvenile cowbirds with prolonged exposure to songs from unrelated species but 

without recent song exposure, these regions do not exhibit a neural representation to 

either song type in juvenile male cowbirds. Together, our findings from both 

experiments indicate the chatter is more salient than other “non-password” 

conspecific vocalizations in juvenile cowbirds. In addition, our findings support 

previous behavioral experimental evidence that juvenile cowbirds use chatter calls to 

initially identify groups of conspecifics then learn and adopt the conspecifics songs 

and acoustic mate-choice preference cues only after long-term exposure (Freeberg 

et al. 1995, Freed-Brown and White 2009).  

The chatter was initially identified as a likely candidate to serve as a 

“password” that aids in species identification for brown-headed cowbirds because 

the chatter: (1) is vocalized frequently by females and occasionally by males, (2) is 

produced throughout the breeding season when young cowbirds are hatching and 

fledging and, (3) has no dialects throughout the large species range, implying it is not 

a vocalization that is learned from local conspecifics (Burnell and Rothstein, 1994). 

Behavioral ontogenetic experiments have confirmed that young cowbirds have a 

perceptual bias towards chatter calls, and upon independence they preferentially 

approach these vocalizations relative to other calls, including chatter-like 

vocalizations of other species (Hauber et al., 2001). Furthermore, female adult 

cowbirds use the chatter as a cue to assess males’ song potency (Freed-Brown and 
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White, 2009). As a potential password, the chatter should be used to identify 

conspecifics and initiates social learning with respect to conspecific traits (Hauber et 

al., 2001). This is consistent with the timeframe of song learning reported in cowbirds 

in which cowbirds memorize song in their second year but delay production until the 

third year (Brenowitz and Beecher, 2005). Thus, the chatter call may be the first 

social cue the young cowbird uses for social recognition before song learning can 

occur in the second year.  

Previous behavioral studies of the chatter demonstrated that juvenile cowbirds 

were more responsive to the chatter as opposed to learned vocalizations such as 

flight whistles, courtship songs and heterospecific songs (Hauber et al., 2001), which 

is similar to behavioral responses of adults (Hauber, 2002; Rothstein et al., 2000). By 

pairing the known behavioral and the novel neural response results here in response 

to chatter calls vs. songs, we can begin to understand social recognition in brood 

parasitic species. For instance, juvenile cowbirds depart from hosts during the first 

few weeks after fledging, potentially assisting with the avoidance of mis-imprinting 

(Louder et al., 2015). Upon locating flocks of other juvenile and adult conspecifics by 

attending to the chatter, they are then exposed to additional species-specific signals, 

including plumage, display, and acoustic traits (Freeberg et al., 1995). Additional 

behavioral, field and neural studies are still needed to further discern the role of the 

chatter as a “password” cueing species recognition. Such future neural studies shall 

also reveal whether the chatter is more salient than spectrally or temporally similar 

heterospecific vocalization. To date, these specific acoustic comparisons have only 

been conducted at the ontogenetic-behavioral level (Hauber et al. 2001). 

The brain regions involved in the neural representation of the chatter are 

frequently involved in the recognition of learned vocalizations used in courtship or 
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territorial defense in adult songbirds. A long history of studies demonstrates NCM 

and CMM display greater activity-dependent gene expression as measured by three 

different immediate early genes, ZENK, C-fos and Arc in birds exposed to 

conspecific songs as compared to control sounds (Mello et al., 2004; Velho et al., 

2005). The amount of expression of these genes in these two auditory regions is not 

simply related to whether the bird is exposed to conspecific song or some other 

sound, rather IEG induction also reflects biologically relevant characteristics of the 

song such as: regional dialects (Maney et al., 2003), song quality (Leitner et al., 

2005; Monbureau et al., 2015), recent experience with song (Sockman et al., 2002), 

associative and non-associative song learning (Gentner et al., 2004; Jarvis et al., 

1995), and even whether the song is directed to a conspecific or undirected (Woolley 

and Doupe, 2008). These patterns of gene induction hold true across sexes (Lynch 

and Ball, 2008; Lynch et al., 2012; Mello et al., 2004; Monbureau et al., 2015; 

Woolley and Doupe, 2008) and various passerine species (Gentner et al., 2004; 

Louder et al., 2016; Maney et al., 2003; Mello et al., 1992; Schubloom and Woolley, 

2016). Interestingly, our results not only reveal that NCM also represents non-

learned vocalizations in juvenile cowbirds but we also report that NCM and CMM are 

responding differently to this vocalization in juvenile birds but not adults. The mean 

ZENK count data shows that CMM might be used differentially among juveniles and 

adult cowbirds as there is a significant interaction for age and stimulus-type in CMM, 

but not NCM. This is also consistent with other studies that have found differential 

ontogenetic and functional roles in these auditory forebrain regions. For instance, 

female zebra finches exhibit greater ZENK induction in CMM in response to 

preferred song (i.e. song directed to a conspecific), as opposed to undirected song 

(Woolley and Doupe, 2008). In contrast, the number of ZENK expressing cells in 
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NCM was affected by whether the song was familiar or unfamiliar (Woolley and 

Doupe, 2008). Thus, CMM and NCM serve different functions in these birds as CMM 

is sensitive to category or quality of song whereas NCM is sensitive to familiarity with 

the song.  

Here, we find that NCM is responding to a non-learned vocalization in which 

previous experience with the sound may have little to do with responses in this 

region, at least in juvenile birds. On the other hand, CMM in juvenile cowbirds does 

not exhibit differential ZENK induction in response to the chatter. It is possible that 

NCM in juveniles and adults provides a neural representation of a “password” for 

species recognition whereas discrimination tasks requiring finer-tuning and greater 

subtlety, especially with songs requiring learning, may be within the domain of CMM 

(Jeanne et al., 2011). Thus, juvenile birds that have less experience with song 

exposure or various song qualities compared to adults would express less ZENK 

induction in this region after exposure to chatter. A recent study of the neural 

responses to song in NCM and CMM of the pin-tailed whydah (Vidua macroura), an 

African obligate brood parasitic finch, supports this hypothesis as those results 

reveal that CMM does display greater evoked ZENK in response to conspecific 

songs as compared to heterospecific songs (Louder et al., 2016). Finally, our own 

results from experiment 2 confirm that experience-dependent species-specific 

responses to songs in juvenile male cowbirds is also limited to CMM, and imply the 

persistence of a potential neural mechanism of mis-imprinting in parasitic cowbirds at 

early developmental stages. To avoid such experience-driven neural selectivity, 

cowbird young must locate and socialize with flocks of conspecifics from an early 

age onwards. Behavioral evidence through chatter-based password (Hauber et al. 
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2001) and habitat-selectivity based mechanisms (Louder et al. 2015) are in support 

of this developmental trajectory of conspecific recognition in juvenile cowbirds.  

These results support the hypothesis that the auditory forebrain responds to 

signals that may serve as a species recognition password. Specifically, this neural 

representation exists within NCM throughout juvenile and adult stages. NCM is a 

region that is also involved in the representation of more complex, learned 

vocalization in many adult passerine species. The neural representation of a non-

learned vocalization acting as a password for brood parasitic species identification 

appears to have evolved by using existing neural mechanisms. It is possible that part 

of the auditory forebrain was co-opted in parasitic cowbirds to represent non-learned 

vocalizations so as to avoid mis-imprinting upon unrelated host species. 

Furthermore, as brood parasitic songbirds evolved from non-parasitic ancestors 

(Sorenson and Payne, 2002), auditory forebrain-based neural processing of 

passwords may also play a prominent role in the initiation and guidance of the 

learning process and social function in non-parasitic species (Soha and Marler, 

2000; Whaling et al., 1997).  
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Figure 1. Photos of feather characteristics that identify the age of males. A.) 

Juvenile males are either extremely mottled or B.) have recently lost the mottled 

pattern but their primary and secondary coverts are still non-uniform in color and/or 

speckling appears around the eyes. C.) Males display full adult plumage with 

matching color in primary and secondary coverts and the typical brown head that 

appears in adult males of this species. Birds in categories represented by A and B 

were placed into the same category for analysis as both these males have less 

experience with conspecifics relative to adults.  
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Figure 2. Sonograms of all vocal signals used in these studies. Experiment 1 

tested IEG induction in the auditory forebrain in response to cowbird chatters and 

dove coos. Experiment 2 tested IEG induction in the auditory forebrain in response 

to cowbird song and red-winged blackbird songs. 
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Figure 3. Photomicrographs illustrating quantification methods  

A.) Photomicrograph of ZENK-ir in NCM in each of the four conditions: juvenile and 

adults exposed to chatters or coos. Scale bars = 100 µm. B.) Photomicrograph of 

ZENK -ir across two auditory forebrain regions in which the immediate early gene 

ZENK was quantified: Caudomedial nidopallium (NCM) and caudomedial 

mesopalllium (CMM). Sections were cut in coronal plane. Scale bar = 100µm. C-E.) 

Illustration of sections in with ZENK-ir was quantified along the rostro-caudal extent. 

NCM = caudomedial nidopallium; CMM = caudomedial mesopallium; Hp = 

hippocampus; LH = Lamina hyperstriatica; Cb = cerebellum 
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Figure 4. Results of immediate early gene induction using ZENK 

immunoreactivity within the auditory forebrain of wild-caught male brown-

headed cowbirds after exposure to cowbird chatters or dove coos. AHY= after 

hatch year; HY = hatch year; CMM = caudomedial mesopallium; NCM = 

caudomedial nidopallium; CON= conspecific (chatter); HET = heterospecific 

(mourning dove coo). AHY/CON: N= 5; AHY/HET: N=6; HY/CON: N = 9; HY/HET: N 

= 6. NCM ZENK-ir across age category: p = 0.08 and CON/HET category: p = 0.001 

and interaction between main effects: p = 0.29. CMM ZENK-ir across age category: 

p = 0.14 and CON/HET category: p = 0.009 and interaction between main effects: p 

= 0.01. Graphed values are mean ± S.E.M 
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Figure 5. Results of immediate early gene induction in juvenile cowbirds only. 

ZENK-ir in the auditory forebrain was measured in juvenile male birds with and 

without prior song exposure. BHCO = brown-headed cowbird; RWBL = red-winged 

blackbird; CMM = caudomedial mesopallium; NCM = caudomedial nidopallium. 

Graphed values are mean ± S.E.M 
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Tables 

 

Table 1. Post-hoc results for experiment 2. These results show the comparisons between each song type juveniles 

were exposed to and song type presented on test day. 
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Table 2. Comparing the outcomes of experiment 1 and 2: Results listed show greater activation of brain regions in 

response to conspecific over heterospecific stimuli. In experiment 1, juvenile (HY) and adult (AHY) male cowbirds were 

exposed to non-learned vocalizations (calls). 2a and 2b are part of the same experiment however, the song type listed in 

each row refers to the song that juvenile male cowbirds were recently exposed to for 8d: 8hr/day. 

 

Brain Region 

Age 

CM

MHY 

NCM 

HY 

CM

M 

AHY 

NCM 

AHY 

Experiment 1: calls no yes yes yes 

Experiment 2a: conspecific  yes yes n/a n/a 

Experiment 2b: heterospecific  no no n/a n/a 
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