Extreme polarization sensitivity in the retina of the corn borer moth

Ostrinia

*Gregor Belušič¹, Katja Šporar¹,², Andrej Meglič¹

¹Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia

²European Neuroscience Institute, Goettingen, Germany

*Corresponding author: Gregor.belusic@bf.uni-lj.si

Keywords moth retina · spectral sensitivity · polarization sensitivity · compound eye · intracellular recording · photoreceptors
Summary statement

Polarization vision in the moths is not confined to the dorsal rim area. The retina of Crambid, Noctuid and Saturniid moths and some dung beetles contains distal photoreceptors with extremely high polarization sensitivity.

Abstract

The visual system of the European corn borer (ECB, Ostrinia nubilalis) was analysed with microscopy and electrophysiological methods (ERG, single cell recordings). The ECB has a pair of mainly ultraviolet-sensitive ocelli and a pair of compound eyes, maximally sensitive to green light. The ommatidia contain a tiered, fused rhabdom, consisting of the rhabdomeres of 9-12 photoreceptor cells with sensitivity peak wavelengths at 356, 413, 480, and 530 nm. The photoreceptors in a large dorsal rim area have straight rhabdomeres and high polarization sensitivity (PS\textsubscript{1,2} = 3.4, 14). Elsewhere, in the main retina, the majority of photoreceptors have non-aligned microvilli and negligible PS, but each ommatidium contains one or two blue-sensitive distal photoreceptors with straight microvilli parallel to the dorsoventral axis, yielding extremely high PS (PS\textsubscript{1,2,3} = 56, 63, 316). Rhabdoms containing distal cells with potentially high PS have evolved at least two times, in moths (Crambidae, Noctuidae, Saturniidae) as well as in dung beetles (Scarabaeidae). The distal photoreceptors with high PS, sensitive to vertically polarized light, represent a monopolatic system which is unsuitable for the proper analysis of e-vector orientation. Anyhow, the distal photoreceptors might be used in conjunction with polarization-insensitive photoreceptors to detect objects that reflect polarized light with stereotyped orientation.
Introduction

The European corn borer, *Ostrinia nubilalis* (Hübner) (Lepidoptera: Crambidae; ECB), is a nocturnal moth and an important crop pest, usually monitored with pheromones and blacklight traps (Bartels et al., 1997). Unfortunately, the mechanism of attraction of insects to light sources is poorly understood, and UV light non-specifically attracts many nocturnal insects. To gain insight into the physiological basis for the visually-driven behaviour of ECB, we studied the spectral and polarization sensitivity of ECB.

Moths have sophisticated compound eyes with superposition optics (Exner, 1891; Kunze, 1969) and often a pair of ocelli (Dickens and Eaton, 1973; Dow and Eaton, 1976). Their eyes are able to convey well-resolved images (Horridge et al., 1977, 1983) and to process colour even in very dim light (Kelber and Henique, 1999; Kelber et al., 2002, 2003). Moth colour vision is generally mediated by the basic components of the insect retina with ultraviolet, blue and green-sensitive photoreceptors (Schwemer and Paulsen, 1973; Bennett et al., 1997; Telles et al., 2014), in some cases expanded with a long-wavelength, red-sensitive spectral class (Langer et al., 1979). Moth retinae can be regionalized, with the short-wavelength and long-wavelength receptors enriched dorsally and ventrally, respectively (White et al., 2003). Additionally, the moth retina contains an extensive dorsal rim area (DRA) (Meinecke, 1981; Anton-Erxleben and Langer, 1988; White et al., 2003), an assembly of polarization-sensitive ommatidia that assist in navigation by the polarized pattern of skylight (Labhart and Meyer, 2002).

Moth ommatidia contain 9 or more photoreceptor cells, forming with their rhabdomeres a fused rhabdom (Langer et al., 1979; Schlecht, 1979). The rhabdoms are optically isolated from each other by an enveloping tracheolar tapetum, and the rhabdom layer is separated from the dioptrical apparatus by a clear zone (Land and Nilsson, 2012). Distinct photoreceptor cells contribute their rhabdomeric microvilli in different layers, thus forming a tiered rhabdom (Langer et al., 1979; Schlecht, 1979). Occasionally, thin distal parts of the rhabdom extend into the clear zone (Fischer and Horstmann, 1971; Horridge et al., 1977).

The probability of light absorption by the microvilli is highest when their long axis coincides with the direction of the e-vector of incident light, and hence the polarization sensitivity of a photoreceptor can be inferred from the geometry of its rhabdomere (Meinecke and Langer, 1982; Wernet et al., 2012). In the main retina (i.e. outside of the DRA), the cross-section of a
moth rhabdom resembles a flower, because the photoreceptors project their microvilli in different directions, often in a fan-like pattern (Fischer and Horstmann, 1971; Meinecke, 1981). Consequently, such photoreceptors have low polarization sensitivity (PS). In the DRA, however, the rhabdoms appear rectangular (Langer et al., 1979). There, the photoreceptors have highly aligned, straight microvilli with potentially high PS. The different photoreceptors of a rhabdom occur in two classes with orthogonally arranged microvilli, forming crossed, polarization-opponent pairs that can analyse the e-vector of incident light independent of its intensity (Labhart, 1988). Interestingly, the ommatidia in the main retina of certain moth species contain one or two distal photoreceptors with perfectly aligned, straight microvilli (Meinecke, 1981; Anton-Erxleben and Langer, 1988), oriented in the dorso-ventral direction (Anton-Erxleben and Langer, 1988), which are presumably strongly polarization sensitive. Indeed, illumination of moth eyes with intense, polarized UV (or blue) light selectively destroyed those microvilli that were oriented in parallel with the light’s e-vector, demonstrating that the distal cells were UV (or blue) sensitive, most probably with high PS (Meinecke and Langer, 1982).

Here we present an anatomical and electrophysiological analysis of the ECB retina, which reveals the properties of the retinal substrate for wavelength discrimination and the detection of polarized light. We demonstrate that ECB has ocelli with two spectral peaks, four spectral classes of retinal photoreceptors and two distinct sets of photoreceptors for the detection of polarized light: one in the DRA, where the rhabdomeres form orthogonal analyser pairs, and one in the main retina, where the rhabdomeres with high PS occur in a single, dorsoventral orientation.
Materials and methods

Animals

Experiments were performed in one European (Ostrinia nubilalis) and two Asian (O. scapulalis, O. furnacalis) species of corn borer. O. nubilalis was reared at the Slovenian Institute for Hop Research and Brewing, at the Plant Protection Institute of the Centre for Agricultural Research of the Hungarian Academy of Sciences, or caught in the western region of Slovenia. O. scapulalis and O. furnacalis were kindly donated by prof. Yukio Ishikawa, University of Tokyo. Prior to the experiments, the moths were kept in a 12/12 h day/night cycle at 22 °C. The experiments were performed during the daytime.

Macro photography

Whole moth was fixed with beeswax to a micromanipulator and imaged with a USB digital microscope Dino-Lite Edge AM4515ZT (AnMo Electronics, New Taipei City, Taiwan). A sequence of images was acquired at different focal planes and merged into a stack with extended depth of field in Adobe® Photoshop® CS5 (Adobe Systems Inc., San Jose, USA).

Histology

Eyes were isolated from hemi-sectioned heads using a razor blade and micro-scissors. The preparation was performed under visible light, so that the eyes were light-adapted. For light microscopy (LM), complete eyes were fixated for 3 hours in 3.5% glutaraldehyde and 4% paraformaldehyde in 0.1 M Na-cacodylate buffer (pH 7.2). Postfixation followed for 90 min at room temperature in 1% OsO₄ in 0.1 M Na-cacodylate. The specimens were rinsed with distilled water, dehydrated in a graded ethanol series (50–100% in 10% steps) and embedded in Spurr resin (Sigma EM0300; Sigma, St. Louis, USA). Semithin sections were mounted on glass slides, stained with Azure II (Sigma, St. Louis, USA) and observed with an AxioImager Z1 microscope (Zeiss, Oberkochen, Germany). Samples for transmission electron microscopy (TEM) were prepared similarly, with the following differences: fixation in 3.5% glutaraldehyde and 4% paraformaldehyde lasted 90 min, samples were dehydrated in a graded acetone series, and Epon resin was used instead of Spurr. Silver ultrathin sections were cut with a diamond knife (Histo 45, Diatome, Switzerland), contrasted with 0.7% uranyl acetate in water for 20 min and with 2.5% lead citrate in water for 10 min and observed with an H-7650 transmission electron microscope (Hitachi, Tokyo, Japan).

For scanning electron microscopy, a head of a female corn borer moth was enclosed in a small vial with a drop of 2 % OsO4 for 24 hours, air-dried, glued with silver colloid paint to
specimen stub and sputtered with platinum in a SCD 050 Sputter Coater (Bal-Tec, Balzers, Liechtenstein). The specimen was examined in a field emission scanning electron microscope FESEM 7500 F (JEOL, Tokyo, Japan). The images were used to count the facets and measure their diameter.

Microspectrophotometry
Absorbance spectra of single pigment granules were measured in 1 μm thick, fixed retinal slices. The microspectrophotometer was an AvaSpec 2048-2 CCD detector array spectrometer (Avantes, Apeldoorn, Netherlands), mounted at a modified Leitz Ortholux microscope (Leitz, Wetzlar, Germany). A xenon arc lamp was used as a light source. The microscope objective was a LUCPlanFL N 20×/0.45 (Olympus, Tokyo, Japan).

Electrophysiological recordings
The electrophysiological experiments were performed at room temperature. The animals were immobilized with a mixture of beeswax and resin to a plastic pipette tip and pre-oriented in a miniature goniometer, mounted on a fully rotatable goniometric and xyz stage. The position of the eye with respect to the stimulus light beam was adjusted to yield maximal light responses. A 50 μm Ag/AgCl wire, inserted into the base of an antenna, served as the reference electrode.

Microelectrodes were pulled from borosilicate and quartz glass capillaries (1/0.5 mm outer/inner diameter) on a P-97 Flaming/Brown or P-2000 laser Micropipette Puller (Sutter, Novato, USA), and mounted on a piezo-driven micromanipulator (Sensapex, Oulu, Finland). For ERG recordings microelectrodes with ~1-5 μm tip, filled with insect saline (0.67% NaCl, 0.015% KCl, 0.012% CaCl₂, 0.015% NaHCO₃, pH=7.2), were driven directly through the cornea or through the cuticle next to an ocellus. For single cell recordings, fine-tipped electrodes backfilled with 3M KCl were inserted into the eye via a small triangular hole in the cornea, which was sealed with silicon vacuum grease to prevent drying. Only young and fully hydrated animals with a minimal cut in the cornea could be used in the experiments. In older and dessicated moths, the low turgor of the clear zone caused an immediate collapse of the retina upon cutting. The electrode excursion was designed so that the photoreceptor cells were impaled perpendicular to their optical axes at the proximal end of the clear zone, ca. 200 μm below the cornea. A shallower excursion resulted in unstable recordings from the thin distal photoreceptor processes, and a deeper excursion resulted in breaking the microelectrode tip.
upon contacting the tracheolar sheath. Successful intracellular recordings were obtained mostly with quartz microelectrodes with a resistance of 120-250 MΩ. A retina typically yielded between 0 and 4 stably impaled photoreceptors. The signal was amplified with a SEC 10 LX amplifier (Npi electronic, Tamm, Germany), conditioned with a Cyber Amp 320 (Axon Instruments, Novato, USA) and digitized with a Micro 1401 (CED, Cambridge, UK) A/D converter. The signal was low-pass filtered with an 8-pole Bessel filter to prevent aliasing and sampled at 2.5 kHz. WinWCP (Strathclyde Electrophysiology Software, Version 4.0.5), and Prism 6.0 (Graphpad, La Jolla, USA) software was used for data acquisition and further analysis.

Optical setup
The light stimulation setup consisted of a 150 W XBO lamp, a quartz condenser and lenses, an SH05/M shutter (Thorlabs, Dachau, Germany), a monochromator (B&K Optik, Limburg, Germany) with a bandpass (FWHM) of 10 nm, a series of reflective neutral density filters on fused silica substrate (CVI Melles Griot, Didam, The Netherlands), a rotatable, continuously variable neutral-density filter on fused silica substrate NDC-100C-4 (Thorlabs, Dachau, Germany) and a focusable objective stage, equipped with field and aperture diaphragms (Qioptiq, Goettingen, Germany) to control the aperture of the stimulating beam to a half width between 1.5° and 15°. The light output was calibrated using a linear thermopile sensor (Newport Oriel, Irvine, USA) and a radiometrically calibrated Flame spectrophotometer (Ocean Optics, Dunedin, USA). At the level of the preparation, the maximal light flux at 467 nm was 1.5×10^{15} photons cm2 s$^{-1}$. The monochromator and rotatable filter were operated with a Due microcontroller (Arduino, Italy), allowing to produce stimuli with equal photon flux between 300 and 700 nm. To achieve equal photon flux, the light had to be attenuated by up to 10^1. For selective chromatic adaptation, monochromatic light from an identical parallel pathway was projected to the eye coaxially with the main stimulating beam. Adapting light was attenuated with discrete neutral density filters to create approximately equal photon fluxes ($\pm 25\%$) at all adapting wavelengths. The eye was adapted for ~3 min and spectral sensitivity was measured as in a dark adapted eye.

The degree of polarization of the stimulating setup was checked by projecting the monochromatic light to an OPT-101 photodiode (Texas Instruments, Dallas, USA) through a single or two, UV-capable polarizing foils OUV2500 (Knight Optical, Harrietsham, UK). Stray light from the monochromator was blocked with Techspec OD 4 bandpass filters
The light shutter was opened and the polarizer rotated by 360°, yielding a sinusoidally fluctuating voltage signal at the photodiode output. The minimal and maximal photodiode voltage \(V_{\text{min}}, V_{\text{max}} \) within a polarizer cycle was measured and the degree of polarization (\(DOP \)) was calculated as

\[
DOP = \frac{V_{\text{max}} - V_{\text{min}}}{V_{\text{max}} + V_{\text{min}}}
\]

The stimulating light from the monochromator was intrinsically slightly polarized (\(DOP = 1.3 \) - 4.5%; Fig. S1). The polarizing foil produced highly polarized light at all tested wavelengths (\(DOP \) approaching 100%; Fig. S1).

Spectral sensitivity was measured following a few minutes of dark adaptation by applying a series of 200 ms, attenuated isoquantal light pulses at 300-700 nm and 700-300 nm in 5 nm steps with sufficiently long (2-10 s) inter-stimulus intervals to avoid light adaptation. Single cells were stimulated with the beam at minimal aperture to minimize the ERG artefact. The intensity-response relation was measured at the wavelength that yielded a maximal response, using graded light pulses ranging from -4 to 0 log intensity. For the proximal photoreceptors, the stimulus had to be additionally attenuated with 1-3 log ND filters. The stimulus-response relation was estimated by fitting the response amplitudes \(V(I) \) to the Hill (Naka-Rushton) function:

\[
V(I) = V_0 I^n (R^n + I^n)^{-1}
\]

where \(I \) is the light intensity, \(V_0 \) the maximal response, \(R \) the intensity needed for a half-maximal response, and \(n \) the slope of the sigmoid. The intensity \(I_c(\lambda) \) necessary to create a criterion response \(V_c \) with a monochromatic light stimulus with wavelength \(\lambda \) is then:

\[
I_c(\lambda) = R \left(\frac{V_0}{V_c} - 1 \right)^{-1/n}
\]

The spectral sensitivity was calculated as the normalised inverse criterion intensity. Polarization sensitivity was measured by projecting the monochromatic light pulses through a UV-capable polarizer foil OUV2500 (Knight Optical, Harrietsham, UK). The polarizer was rotated around its axis at 5.6° or 11.25° steps. Horizontally oriented e-vector was defined as 0° and 180°, vertically as 90° and 270°. Measurements were done at the peak wavelength of the spectral sensitivity. Light flashes that resulted in 25-75% of the maximal response amplitude were used. Polarization sensitivity was calculated by transforming the response voltages into sensitivity with equation (3), and fitting the sensitivity values with a \(\cos^2 \) function:
where S is the sensitivity, α the e-vector angle, A the amplitude, ϕ the phase shift and C the offset. Polarization sensitivity PS was then calculated as the ratio between the sensitivity maximum and minimum: $PS = S_{\text{max}}/S_{\text{min}}$.

Results

Anatomy

The visual system of ECB is composed of a pair of ocelli and a pair of compound eyes with superposition optics (Fig. 1). The diameter of the compound eyes of female ECB is ca. 1.5 mm. Males have slightly larger eyes, but as we found no differences between the ultrastructure and physiological properties of the male and female retina, all results from both sexes are merged. Each eye, composed of ca. 3000 ommatidia with facet diameter 15 µm (Fig. 1B, C), consists of, from proximal to distal, the dioptical apparatus consisting of corneal lenses with surface nipples (Fig. 1D) and an elongated crystalline cone, the clear zone with pigment cells containing pigment granules and the retina made up of the sets of photoreceptors (Fig. 2A, B, C). In each ommatidium, the photoreceptor processes in the clear zone form a distal rhabdom with ~2 µm diameter (Fig. 2C1). The rhabdomeres of 9-12 retinula cells form the proximal rhabdom (Fig. 2C2). A small, pigmented basal photoreceptor cell (Fig. 2C3) is apposed to the tracheolar tapetum, which optically isolates the rhabdoms and creates a mirror at the proximal part of the retina (Fig. 2C4).

The compound eye has an extensive dorsal rim area (DRA), consisting of ~100 ommatidia, as inferred from the semithin sections. The rhabdom cross section has a rectangular, to slightly cushion-like shape (Fig. 2D, E). Each rhabdom in the DRA is formed by orthogonally positioned rhabdomeres (Fig. 2E). The microvilli of each rhabdomere are aligned in one direction along the entire photoreceptor depth, thus forming an excellent anatomical substrate for the detection of linearly polarized light.

Ommatidia in the rest of the retina (‘the main retina’) have a flower-shaped rhabdom cross section (Fig. 2D, F, G). Here, most of the photoreceptor cell bodies have a triangular profile, and their microvilli are arranged approximately perpendicular to the longer sides of the triangle. Hence, the microvilli of a single cell subtend all angles between 0 and 90° (Fig. 2G).
Such an arrangement of the microvilli effectively minimizes the polarization sensitivity of a photoreceptor. However, in the transition zone between the clear zone and the main rhabdom layer (Fig. 2B, horizontal line), most of the rhabdom cross section is occupied by the distal photoreceptor cell with an enlarged rhabdomere in the shape of a droplet. In semithin sections, stained with Azure, the rhabdomeres of these photoreceptors appear lighter than the rhabdomeres of adjacent photoreceptors (Fig. 2F, asterisk in 2F, G). The rhabdomeres of the distal photoreceptors taper towards proximally and there occupy only a small fraction of rhabdom (Fig. 2C2). The microvilli of the distal photoreceptors are aligned along the dorsoventral axis of the retina along the entire depth of the photoreceptor, and the distal photoreceptor is therefore potentially the only cell type in the main retina that is sensitive to the direction of the e-vector of linearly polarized light.

Microelectrode recordings

We characterized the visual organs of ECB by recording from the eyes and ocelli. We first recorded from the ocelli and the retina of 10 animals with extracellular electrodes, to determine the spectral sensitivity via electroretinography (ERG). The ERG spectral sensitivity of dark-adapted ocelli has a large peak in the UV at ~360 nm and a smaller peak in the green at ~520 nm (Fig. 3A). Using chromatic adaptation, we could only slightly suppress the sensitivity of the ocelli in the green or UV part of the spectrum. Quite differently, the ERG spectral sensitivity of the dark-adapted retina has a small peak in the UV at ~380 nm and a large peak in the green at ~530 nm (Fig. 3A). Chromatic adaptation at any wavelength always caused a nonspecific fall in sensitivity below 500 nm (Fig. S2A) due to the movement of short-wavelength absorbing screening pigment granules into the light path (Fig. S2B). We systematically recorded from the different regions in the retina (ventral, equatorial, dorsal, DRA), which yielded virtually identical ERG spectral sensitivities of the different eye parts in both sexes.

We performed intracellular photoreceptor recordings using sharp microelectrodes in 30 moths. The photoreceptor cells could be impaled at the proximal end of the clear zone, ca. 200 µm from the cornea, just before the electrode tip was broken by the tracheoles. The receptor potentials were relatively slow (response latency minimally 11~16 ms; no fast adaptation at high light intensity) and noisy due to photon shot noise (Fig. 3B). In most preparations we could obtain one or two quality cells, which allowed recording their response to the intensity series, as well as to the polarization and spectral scan (Fig. 3B, C, D). Consistently with the
ERG recordings, the spectral sensitivity of most cells in the main retina was maximal in the green (Fig. 3E, green curve; $\lambda_{\text{max}}=530$ nm; $N=15$; 20 more cells not included in the analysis). Additionally, we encountered cells maximally sensitive in the blue (blue curve, $\lambda_{\text{max}}=480$ nm; $N=4$), violet (black curve, $\lambda_{\text{max}}=413$ nm; $N=2$) and UV (violet curve, $\lambda_{\text{max}}=350$ nm, $N=2$). The different photoreceptor classes were encountered stochastically. In the dorsal part of the retina, adjacent to the ocellum, we successively impaled several photoreceptors with high, but not extreme PS, before hitting the head capsule. Two of these photoreceptors, that were most likely a part of the DRA, had sensitivity maxima at 480 and 530 nm, respectively (spectral sensitivity data merged with the blue and green-sensitive cells from the main retina). The continuous sensitivity curves were obtained by smoothing the spectral sensitivity data by adjacent averaging of three data points (Fig. 3E). For comparison, we plotted the theoretical rhodopsin absorbance curves (Stavenga, 2010), calculated with fixed parameters (α-peak, $\lambda_{\text{max}}=352$ nm, 413 nm, 480 nm, 530 nm; β-peak, amplitude 0.25, $\lambda_{\text{max}}=350$ nm).

We measured the polarization sensitivity of each impaled ECB photoreceptor at its sensitivity peak wavelength. In the main retina, all green, UV and violet-sensitive cells and one blue-sensitive cell (signals in Fig. 3B, C) had very low polarization sensitivities (PS≈1-1.1). However, we encountered three blue-sensitive photoreceptor cells ($\lambda_{\text{max}}=480$ nm) with extreme sensitivity to the direction of the e-vector (Fig. 4A). All three cells ceased to respond to light flashes when the polarizer was oriented horizontally (i.e. perpendicular to the dorsoventral axis of the retina). The polarization sensitivity curve strongly deviated from a \cos^2-function and resembled an all-or-none function with additional peaks due to receptor adaptation (Fig. 4A, B). The zero response to horizontally polarized light yielded an infinite PS value. A conservative estimate of the minimal PS could be obtained by calculating the inverse value of the transmittance of the neutral density filter at which the photoreceptor ceased to respond to unpolarized test flashes in the intensity run, yielding $PS_{1,2,3}=316, 63, 56$. The only candidate cells for the polarization sensitive photoreceptors in the main retina are the distal photoreceptors with straight microvilli (Fig. 2F, G; Fig. 5A, B).

The blue and green photoreceptors, most likely located in the DRA, showed classical sinusoidal polarization sensitivities, with $PS_{\text{blue}}=14$ and $PS_{\text{green}}=3.4$ (Fig. 4C, D). Our results thus show that the retina of ECB is populated by two separate sets of polarization sensitive photoreceptors; those in the dorsal rim area have orthogonally aligned microvilli, with rather
high PS, and the distal photoreceptors in the main retina have dorsoventrally aligned microvilli, with extremely high PS (Fig. 4E, F).

Discussion

Our study represents the first detailed electrophysiological investigation of the spectral and polarization sensitivity of moth photoreceptors, supported by anatomical data. Intracellular recordings from moth photoreceptors are well-known to be technically very challenging, and this also prevented us from marking the recorded cells with intracellular dyes. So far, the spectral sensitivity of moth photoreceptors has been inferred from microspectrophotometry of extracts of visual pigments (Schwemer and Paulsen, 1973; Langer et al., 1986), anatomical preparations (Langer et al., 1979; Langer et al., 1986), and extracellular recordings (Höglund et al., 1973; Horridge et al., 1977; Schlecht, 1979; Crook et al., 2014; Telles et al., 2014) and intracellular recordings have remained very rare (Horridge et al., 1983; White et al., 1983). We have to emphasize here that single-cell recordings are crucial in colour vision studies, because the spectral sensitivity of a photoreceptor often substantially differs from its rhodopsin absorption spectrum. A photoreceptor’s spectral sensitivity can be modified by screening pigments acting as optical filters (Arikawa et al., 1999a, 1999b; Wakakuwa et al., 2004), by lateral filtering in the fused rhabdom (Snyder et al., 1973), and by electrical interactions of the different photoreceptors (Matić, 1983). A combination of these effects may have caused the modifications of the spectral sensitivities of the UV, violet and blue sensitive photoreceptors. Their spectral sensitivity curves are around their peak slightly narrower than the corresponding 356 nm, 413 nm and 480 nm nomograms (Fig. 3E, thin curves), indicating that the sensitivity is sharpened by the filtering by the adjacent rhabdoms with different rhodopsins. At longer wavelengths, however, these receptors show unusually high sensitivity, possibly due to electrical coupling with the long-wavelength photoreceptors, coexpression of other opsins or high transmittance of screening pigments. The green-sensitive photoreceptors have slightly broader sensitivity peak than that of the 530 nm nomogram. These photoreceptors probably occur in multiple copies per ommatidium which reduces the sharpening of their spectral sensitivity via lateral filtering by other spectral classes. Their β-peak in the UV is probably reduced by the lateral filtering by the other receptor classes and by the screening pigments that absorb mostly in the short-wavelength part of the spectrum.

The ECB retina codes the light spectrum between 300 and 650 nm with four, evenly spaced spectral classes of photoreceptors (the distance between adjacent peaks of spectral sensitivity
is $\Delta_\lambda_{max}=50-80$ nm). A fifth photoreceptor class, possibly sensitive to very long wavelengths, in the form of the basal receptor might have evaded our study, being inaccessible to the microelectrode due to the tracheolar sheath. However, compared to the red sensitive, large basal cell of the moth *Spodoptera* (Langer et al., 1979), the basal cell in ECB is very small (Fig. 2C3), and it therefore seems to have little physiological importance except in very bright light. The potential for tetrachromatic vision by the four receptor classes in the ECB retina is supplemented by the putatively dichromatic ocelli. Having revealed now the spectral richness of the ECB visual system, this may open new possibilities for the development of more specific and effective light traps.

The presented data strongly suggest that ECB retina is equipped with a double substrate for polarization vision. The presence of a large DRA with orthogonal analyzers indicates that navigating ECB could be assisted with polarization vision, based on the detection of e-vectors in the sky, although skylight navigation has not yet been demonstrated in any moth species. The DRA rhabdoms, arranged in a fan-like pattern, most likely reside at the input to the neurons with receptive fields that match the patterns of skylight e-vector, as is the case in the locusts (Bech et al., 2014).

The PS distal cells outside the DRA occur in singlets, without any obvious opponent PS cells with orthogonal microvilli. Thus, they represent a monopolatic system which in itself cannot analyse the e-vector orientation (Labhart, 2016). Their high spatial order and extremely high PS anyway suggest that they do participate in a distinct, novel submodality of polarization vision. The putative downstream PS visual interneurons that compare the signals from photoreceptors with common field of view however will receive signals from quasi-opponent pairs, formed by the distal, polarization-sensitive, vs. the proximal, polarization-insensitive photoreceptors. To understand the neural image created by the monopolatic and the dipolatic system in the main retina and the DRA, respectively, we present two simplified ommatidia (Fig. 4G). The one in the DRA is composed of an orthogonal analyser pair, while the one in the main retina is composed of one distal and seven proximal photoreceptors. Illumination creates specific patterns of receptor excitation, indicated with + and – for small and high depolarization, respectively. The schematized ommatidia are presented with three extreme scenarios: the photoreceptors look into a bright ‘white’ object reflecting unpolarized, vertically polarized or horizontally polarized light. Unpolarized bright light will strongly excite all photoreceptors in both parts of the retina (Fig. 4G, left column). Vertically polarized...
light (Fig. 4G, middle column) will excite only two photoreceptors with vertical microvilli in the DRA, but all photoreceptors in the main retina, including the distal photoreceptor. Therefore, the ommatidium in the main retina cannot allow the neurons to discriminate unpolarized and vertically polarized bright light. Horizontally polarized light (Fig. 4G, right column) will excite two photoreceptors in the DRA, and all proximal, but not the distal photoreceptor in the main retina. Thus, in the main retina, horizontally polarized light will create a specific pattern of photoreceptor excitation different from that created by unpolarized light. Anyhow, due to the low absolute sensitivity of the distal photoreceptor, low intensity, unpolarized light will create a similar excitation pattern, indistinguishable from the pattern created by horizontally polarized light. In order for the monoplastic system to specifically detect horizontally polarized light, an additional thresholding mechanism should be employed in the putative neuropil, operated by the absolute level of excitation of the proximal photoreceptors. Thus, a bright polarized patch, such as a reflection from a leaf surface or water, could be resolved from a dim patch with similar spectral composition. Alternatively, the distal photoreceptors might feed into a system for the ‘successive mode’ of polarization vision (Kirschfeld, 1972). A polarized object will evoke a strongly fluctuating signal in the distal receptors, if observed from different angles during locomotion.

Within the genus Ostrinia, the ommatidia contain one or two distal photoreceptors (Fig. 2F, inset; Fig. 5A, B), and the retinal anatomy appears to be highly conserved as can be inferred from the TEM sections in O. furnacalis (Fig. 5B) and from the LM sections of other moths in the family Crambidae (Lau et al., 2007). Anatomically similar distal photoreceptors exist also in other families of moths, such as the owlet moths (Meinecke, 1981) (Noctuidae, Fig. 5C), the silk moths (Eguchi and Horikoshi, 1984; Anton-Erxleben and Langer, 1988) (Saturniidae, Fig. 5D), and possibly also in the snout moths (Fischer and Horstmann, 1971) (Pyralidae). Strikingly, a similar rhabdom organization might have independently evolved in Coleoptera with superposition eyes, such as the dung beetles (Gokan, 1989) (Scarabaeidae, Fig. 5E). Polarization vision outside the DRA has been also demonstrated in the apposition eyes of the butterfly Papilio (Kelber et al., 2001; Kinoshita et al., 2011), backswimmer bugs, dragonflies and locusts, to detect water (Schwind, 1983, 1985; Wildermuth, 1998; Shashar et al., 2005), in horseflies, to detect mammalian fur (Horvath et al., 2008), and in the fruitflies (Wernet et al., 2012).
The extraordinary physiological properties of the distal photoreceptor raise many questions. Here we described it as a blue-sensitive cell, but it is likely that a minor subpopulation of UV-sensitive distal receptors exists in the ECB retina, similarly as in Spodoptera (Meinecke and Langer, 1984). The distal receptors probably do not contribute to colour vision, because high polarization sensitivity prevents reliable wavelength discrimination (Wehner and Bernard, 1993; Kelber et al., 2001). We propose that they are tuned to short wavelengths to optimally match the spectral composition of skylight, reflected from shiny surfaces as polarized light. Their PS exceeds the highest values ever measured in any arthropod species (e.g. PS>21 in the DRA of the bee Megalopta) (Greiner et al., 2007; review in Stowasser and Buschbeck, 2012), except for the case of the fly DRA cells R7marg and R8marg, which produce hyperpolarizing responses to polarized stimuli in the non-preferred direction (Hardie, 1984; Weir et al., 2016). In the fly DRA, the high PS is however possible due to filtering in a tiered rhabdom and electrical interactions between the two photoreceptors in a polarization-opponent pair (Weir et al., 2016). How is then such high PS achieved in a moth’s cell, which has no orthogonally positioned opponent photoreceptors? Perfectly aligned rhodopsin molecules in a microvillus yield a highest dichroic ratio $\Delta M=20$ and consequently a similar magnitude of the PS=20 in a thin photoreceptor slice with negligible self-screening (Snyder and Laughlin, 1975). In Ostrinia, PS above this limit is possible because of the selective absorption of light that is polarized in the non-preferred direction by the microvilli of adjacent photoreceptors (Fig. 5A, B). Furthermore, the possibly detrimental effects of self-screening on polarization sensitivity (Snyder, 1973) in the distal photoreceptor are reduced by its favourable geometry. Its rhabdomere occupies a large cross sectional area only at a very shallow, distalmost part of the rhabdom, and then quickly tapers down to a very small wedge. Thus, the distal photoreceptor is equivalent to a thin slice of aligned microvilli. Additionally, self-screening might be reduced also by the low density of rhodopsin molecules. In the semithin sections, the rhabdomere of the distal photoreceptor was always stained very lightly (Fig. 2D, F), perhaps due to the low protein content, and we were never able to saturate its responses even with the brightest flashes (Fig. 4A, intensity run). Lastly, absorption of polarized light by the distal photoreceptor must be very low since it does not seem to substantially polarize light absorbed by the proximal photoreceptors which have negligible PS. Minimal self-screening is associated with low photon yield and is certainly not well suited for low light conditions. The polarization-sensitive distal photoreceptors could only have evolved in compound eyes with a large entrance pupil, that is, in eyes with superposition optics. We suggest that they are used to visually recognize the horizontally polarized
reflections from water bodies or foliage, or vertically polarized skylight pattern in the north and south at the sunset or sunrise. Finally, the array of polarization detectors in the main retina could operate also in concert with the DRA, and support navigation in difficult conditions.
Acknowledgements
The authors thank Drs. Kentaro Arikawa and Kazimir Drašlar for the assistance in electron microscopy, Dr. Doekele Stavenga for commenting on the manuscript and assistance in microspectrophotometry and Drs. Magda Rak Cizej, Yukio Ishikawa and Gabriella Köblös for the moths.

Competing interests.
No competing interests declared.

Authors’ contributions
G.B. and K.Š. performed the electrophysiological experiments and analyzed the data, K.Š. and A.M. performed the anatomical analysis, G.B. and A.M. wrote the manuscript. All authors contributed to the final draft.

Funding.
The study was funded by AFOSR-EOARD (grant FA9550-15-1-0068 to G.B. and A.M.), ARRS (grant P3-0333 to G.B.) and by the Slovene-Japan bilateral project (BI-JP/13-15-003).
References

Fig. 1. External appearance of the visual system. **A** Macro photo of the head of a female European corn borer moth, frontal view. OC, ocelli. **B, C, D** Scanning electron micrographs. **B** Overview of the right half of the head with a compound eye and an ocellus (OC). **C** Facet lenses. **D** Corneal surface nipples; nipple diameter ca. 120 nm. Scale bar in A and B, 100 µm; C 5 µm; D 0.5 µm.
Fig. 2. Anatomy of the ECB retina. A, D, F Light micrographs. C, E, G Transmission electron micrographs. A Longitudinal section of the retina. B Schematic drawing of the ommatidium in A; the dioptrical apparatus in the distal part consists of a corneal lens (CL) and a crystalline cone (CC); the central part is the clear zone with the secondary pigment cells (PC), photoreceptor and PC nuclei (NU), and the distal rhabdom (DR); the proximal part contains the proximal rhabdom (PR) and the tracheoles (TR) that form a tapetum. The circles on the right represent the schematic drawings of the rhabdom cross section at the three levels. C Cross sections at four depths indicated by the sublabels C1-4 on the left in B. C1 Distal rhabdom in the clear zone. C2 Proximal rhabdom in the main retina. C3 Rhabdom proximal to the tapetum. The basal cell (BC) is very small and pigmented. C4 The tapetum, formed by ribbed tracheolar tubes, penetrated by the axons of the 12 enumerated photoreceptors of an ommatidium D Cross section of the central and dorsal retina; most of the retina is occupied by the flower-shaped rhabdoms (lower half); the dorsal part (upper half) is occupied by a large dorsal rim area with rectangular rhabdoms. E Cross section of a rhabdom in the dorsal rim area. F Cross section of the main retina at the distal level of the proximal rhabdom, indicated by the horizontal line in B; at this level, most ommatidia contain a large distal photoreceptor
cell, characterized by the light staining (indicated by an asterisk in B, D, F, G). Inset, rhabdoms containing two lightly stained distal photoreceptors. G Cross section of a rhabdom in the main retina, slightly proximally to the section in F; the distal photoreceptor cell (1) is somewhat thinner than the other photoreceptors. Scale bar, A, D, F, 20 µm; C1-C4, E, G, 2 µm.
Fig. 3. Spectral sensitivity of ECB. A Spectral sensitivity (ERG; mean±SEM) of the compound eyes (λ_{max}=536 nm; Ey, green; N=7) and ocelli (λ_{max}=358 nm; Oc, violet; N=5). B Intracellularly recorded responses of a blue-sensitive photoreceptor to 200 ms / 480 nm light flashes, graded in 0.5 log intensity steps (OD, optical density of the ND filter). C Responses of the cell in B to 200 ms / 480 nm light flashes, presented through a rotating polarizer. D Intracellularly recorded responses to isquantal spectral stimulus sequences of, from top to bottom, a UV, a violet, a blue and a green-sensitive photoreceptor. E Spectral sensitivity (intracellular recordings, mean±SEM) of the four photoreceptor classes, peaking at 352 nm (violet; N=2), 413 nm (black; N=2), 480 nm (blue; N=4) and 530 nm (green; N=15); thin curves are rhodopsin nomograms with peaks at the same wavelengths. Thick curves in A and E represent smoothed data with adjacent averaging of three data points.
Fig. 4. Polarization sensitivity of ECB photoreceptors from the main retina (A, B) and the dorsal rim area (C, D). **A, C** Intracellularly recorded responses of polarization sensitive photoreceptors from the main retina (A) and from the dorsal rim area (C) to light flashes at 480 nm, graded in 0.5 log intensity steps (OD, optical density), and to a sequence of 480 nm flashes (vertical bars below the voltage traces), presented through a rotating polarizer (0° is horizontal). **B** Polarization sensitivity of the photoreceptor from A (mean±SEM; average of four consecutive experiments in the same cell). **D** Polarization sensitivity of the photoreceptor
from C, fitted with a \cos^2 function. E Substrate for polarization vision in the different parts of the eye; ventral and central retina contain an array of distal photoreceptors (vertical arrows), sensitive to vertically polarized light; dorsal rim area contains rectangular rhabdoms with orthogonally positioned, polarization sensitive photoreceptors (crossed arrows). F Schematic representation of the rhabdom in the DRA (top) and the main retina (bottom); the wide distal cell has aligned microvilli. G Patterns of excitation in DRA rhabdom (top row) and in the main rhabdom (bottom row) upon the detection of unpolarized (left column), vertically (middle column) and horizontally (right column) polarized light. Note that the main rhabdom only creates a specific signal in the latter case.
Fig. 5. Substrate for polarization sensitivity outside of the dorsal rim area. A European corn borer. B Asian corn borer. A and B, examples of rhabdom with two distal photoreceptors, encircled by the orthogonally oriented microvilli of adjacent photoreceptors. C African armyworm moth (redrawn from Langer et al., 1979). D Silk moth (redrawn from Eguchi and Horikoshi, 1984). E Dung beetle (redrawn from Gokan, 1989). Asterisks indicate the photoreceptors with aligned microvilli. Scale bar in A and B, 2 µm.
Extreme polarization sensitivity in the retina of the corn borer moth *Ostrinia*
Gregor Belušič, Katja Šporar, Andrej Meglič

Supplement

Fig. S1. Degree of polarization (DOP) of the stimulating beam in the UV, blue, green and red (360 nm, 450 nm, 525 nm, 600 nm), measured via the fluctuation of photodiode voltage upon rotation of the polarizer (right column). Intrinsic polarization (DOP=1-4 %), measured with a single rotating polarizer, is caused by the diffraction grating in the monochromator and other unknown sources. Additional fixed polarizer (‘crossed polarizers’), inserted in the light path, shows that the DOP is almost 100% at all tested wavelengths. Column at the right shows the photodiode signal, measured with crossed polarizers (top trace) and with a single polarizer (middle trace) upon rotation of the polarizer (bottom trace).

Fig. S2. Selective chromatic adaptation of ECB compound eye, measured via electroretinogram. A Normalized spectral sensitivity of a dark adapted eye (black curve) and the eye, adapted with blue (420 nm) or green (530 nm) monochromatic light. Light adaptation reduces sensitivity in the short wavelength part of the spectrum, irrespective of the wavelength of adapting light, probably due to the light absorption by the pupil. B Absorbance of the pupil. Absorbance of single granules of screening pigments in the primary (PPC) and secondary (SPC) pigment cells is high below 530 nm, causing the reduction of sensitivity in the short-wavelength part upon light adaptation.