Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean

Marta S. Pimentel1,2,*, Filipa Faleiro1, Gisela Dionísio1,3, Tiago Repolho1, Pedro Pousão4, Jorge Machado2, Rui Rosa1

Running head: Fish deformities in a changing ocean

1 Laboratório Marítimo da Guia, Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal.

2 Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal.

3 Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

4 Instituto Português do Mar e da Atmosfera. Av. 5 de Outubro s/n 8700-305, Olhão, Portugal

* Corresponding author: Marta Pimentel. Telephone: +351-214869211. Fax: +351-214869720. E-mail: mcrsilva@fc.ul.pt

Keywords: Ocean warming, acidification, fish larvae, ecophysiology, skeletal deformities
Early life stages of many marine organisms are being challenged by rising seawater temperature and CO₂ concentrations, but their physiological responses to these environmental changes still remain unclear. In the present study, we show that future predictions of ocean warming (+4°C) and acidification (ΔpH = 0.5 units) may compromise the development of early life stages of a highly commercial teleost fish, *Solea senegalensis*. Exposure to future conditions caused a decline in hatching success and larval survival. Growth, metabolic rates and thermal tolerance increased with temperature but decreased under acidified conditions. Hypercapnia and warming amplified the incidence of deformities by 31.5% (including severe deformities such as lordosis, scoliosis and kyphosis), while promoting the occurrence of oversized otoliths (109.3% increase). Smaller larvae with greater skeletal deformities and larger otoliths may face major ecophysiological challenges, which might potentiate substantial declines in adult fish populations, putting in jeopardy the species fitness under a changing ocean.
Introduction

Atmospheric carbon dioxide (CO₂) concentration has increased from pre-industrial levels of 280 µatm to present-day levels of 394 µatm, and it is expected to rise up to 730-1000 µatm by the end of the century (Caldeira and Wickett, 2003; Meehl et al., 2007). Continuous CO₂ uptake by world’s oceans is changing the seawater chemistry and is estimated to lead to a drop of 0.4-0.5 units in seawater pH (Caldeira and Wickett, 2005). Concomitantly, oceans’ temperature is rising, and global sea surface temperature is expected to increase approximately 4°C by 2100 (Meehl et al., 2007), leading to profound impacts on marine ecosystems. In fact, the predictable rapid rate of climate change will induce thermal stress to coastal marine biota as their thermal tolerance limits are reached or even exceeded. Beyond a certain thermal limit, biological processes such as metabolism, growth, feeding, reproduction and behavior may be affected (Carmona-Osalde et al., 2004; Portner and Knust, 2007; Nilsson et al., 2009; Byrne, 2011; Pimentel et al., 2012; Rosa et al., 2012), thus compromising the overall fitness and survival of the species. Additionally, under higher temperatures, marine organisms are likely more vulnerable to other environmental stressors such as ocean acidification (Portner, 2008; Byrne et al., 2010; Findlay et al., 2010; Parker et al., 2010; Sheppard Brennand et al., 2010; Byrne, 2011; Rosa et al., 2013; Rosa et al., 2014).

Ocean acidification is considered a major threat to marine organisms as it may lead to acid–base balance disturbances, protein biosynthesis decrease, metabolic depression and growth reduction (Seibel and Walsh, 2001; Portner et al., 2004; Langenbuch et al., 2006; Rosa and Seibel, 2008; Baumann et al., 2012). Exposure to elevated CO₂ particularly affects calcifying organisms (Orr et al., 2005; Dupont et al., 2008; Fabry et al., 2008; Talmage and Gobler, 2010), although detrimental effects on survival, growth and respiratory physiology of non-calcifying marine animals have also been observed (Seibel and Walsh, 2001; Rosa and Seibel, 2008; Munday et al., 2009b).

Fish have developed an effective acid-base regulatory mechanism, which allows them to accumulate bicarbonate and exchange ions across gills under hypercapnic conditions (Portner et al., 2005; Ishimatsu et al., 2008; Melzner et al., 2009). While this is true for adult organisms, early life stages may not benefit from it, as they lack well-developed and specialized ion-regulatory mechanisms to regulate and maintain their internal ionic environment (Morris, 1989; Sayer et al., 1993). Therefore, early life stages are expected to be the most vulnerable to ocean climate change-related conditions and their eventual inability to cope and adapt may constitute a bottleneck for species persistence in a changing ocean (Bauman et al., 2011; Fromell et al., 2012). Until now, only a few studies have scrutinized the impact of ocean climate change on fish larvae performance. While some report negligible effects of ocean acidification on fish larvae (Munday et al. 2011b; Hurst et al., 2012; Harvey et al., 2013; Hurst et al., 2013; Maneja...
et al., 2013), others demonstrate that ocean warming and acidification may have a direct impact on embryonic development, larval growth, metabolism, behavior and survival (Bauman et al., 2011; Franke and Clemmesen, 2011; Frommel et al., 2012; Bignami et al., 2013; Pimentel et al., 2014). More recently, it has also been shown that larval otoliths can be affected by changes in the seawater carbonate chemistry (Checkley et al., 2009; Munday et al., 2011a; Bignami et al., 2013), but the impact of hypercapnia on larval fish skeletogenesis still remains unclear. In the present study, we investigated how the combined effect of warming (+4ºC) and high pCO$_2$ (0.16% CO$_2$; pCO$_2$ = ~1600 µatm; ΔpH = 0.5) affects the hatching success, larval survival, growth, metabolic rates, thermal tolerance limits and skeletogenesis of early life stages of a flatfish, Solea senegalensis, with major commercial importance. This teleost fish is an environmentally resilient species that inhabits the Western Iberian Upwelling Ecosystem, the northern limit of the Canary Current Upwelling System, one of the four major eastern boundary currents of the world, where pCO$_2$ levels may reach up to ~500 µatm (AlvarezSalgado et al., 1997; Perez et al., 1999; Borges and Frankignoulle, 2002). Thus, organisms inhabiting such upwelling ecosystem are commonly exposed to seasonal high pCO$_2$ events, due to the emergence of deep hypercapnic water masses. In these regions, the future pCO$_2$ levels are thus expected to exceed the forecasted 1000 µatm for 2100 (Meehl et al., 2007).

Results

Hatching success, larval growth and survival

The impact of high pCO$_2$ and environmental warming on the hatching success, survival, length and growth of *S. senegalensis* larvae is shown in Figure 1 (see also Supplementary Table 1). Warming had a negative impact on the hatching success of sole larvae ($p<0.05$), but not hypercapnia ($p>0.05$) neither the interaction factor between them ($p>0.05$). The hatching rates decreased from 86.7 ± 5.8% at the present-day scenario to 70.0 ± 10.0% under the future hypercapnic and warming conditions (Fig. 1a).

Survival rates of 30 dph larvae were also significantly affected (Fig. 1b). Both temperature and pCO$_2$ had a significant effect ($p<0.001$) on survivorship, which decreased from 45.7 ± 1.9% under control conditions to 32.7 ± 2.6% in the future scenario. However, the interaction of both variables was not significant ($p>0.05$). The mean length of 30 dph larvae under control conditions was 13.2 ± 1.5 mm (Fig.1c). Larval growth increased significantly with warming ($p<0.05$), but decreased significantly under acidified conditions ($p<0.05$), with an observed significant interaction effect between these two variables ($p<0.05$). Warming was responsible for increasing length by 48.6 and 46.5% under normocapnic and hypercapnic conditions, respectively. Regardless temperature, *S. senegalensis* larvae became nearly 22% smaller with increasing CO$_2$. As a result, the highest length value (19.4 ± 1.1 mm) was observed under the
warming and normocapnic scenario, while the lowest length (10.3 ± 0.9 mm) was found at lower temperature and hypercapnic conditions. A quite identical trend was observed for SGR, which presented a 23.7-28.4% increase with warming and a 11.9-15.1% decrease with acidification (Fig. 1d). No significant interaction was observed between these two factors (p>0.05).

Oxygen consumption rates, thermal sensitivity and thermal tolerance limits

The effect of warming and high pCO2 on the metabolic rates and thermal tolerance limits of S. senegalensis larvae is presented in Figure 2 (see also Supplementary Table 2). Temperature had a positive effect (p<0.05) on oxygen consumption rates (OCR), upper thermal tolerance limits (LT50) and critical thermal maximum (CTMax), while hypercapnic conditions promoted a significant reduction (p<0.05) on these physiological parameters. Even so, no significant interaction was observed between these two factors (p>0.05). OCR of 30 dph larvae increased with temperature from 23.1 ± 3.2 to 34.8 ± 3.5 µmol O2 h⁻¹g⁻¹ and from 16.8 ± 3.8 to 25.3 ± 1.5 µmol O2 h⁻¹g⁻¹ under normocapnic and hypercapnic conditions, respectively (Fig. 2a). These findings represent a decrease of 27.3% under acidified conditions. LT50 of 30 dph larvae increased with temperature from 37.5 ± 0.1 to 37.7 ± 0.0ºC under normocapnia, and from 36.1 ± 0.1 to 38.8 ± 0.3ºC under hypercapnia conditions (Fig. 2b). CTMax of 30 dph larvae followed a similar pattern as for OCR and LT50, increasing with temperature from 37.0 ± 0.9 to 38.3 ± 0.5ºC under normocapnia, and from 35.5 ± 0.6 to 37.3 ± 0.7ºC under hypercapnia conditions (Fig. 2c). Additionally, the development stage had a significant effect (p<0.05) over metabolic rates and thermal tolerance limits. S. senegalensis hatchlings presented higher OCR and lower LT50 and CTMax values, in comparison to 30 dph larvae (Fig. 2a,b,c).

Thermal sensitivity of S. senegalensis larvae between 18ºC and 22ºC ranged between 1.89 and 2.79 (Table 1). Q10 values decreased under acidified conditions and increased with fish age.

Skeletal deformities and otolith morphometrics

Several types of skeletal anomalies were found in 30 dph S. senegalensis larvae (Table 2; Fig. 3). Skeletal deformities consisted mainly of vertebral abnormalities, such as fusions (Fig. 3c-g), body malformations (Fig. 3c,d), and vertebral curvatures like scoliosis, lordosis and kyphosis (Fig. 3i,j). Structures such as haemal and neural spines and arches were some of the most affected structures across treatments (Fig. 3c-g).

Future ocean warming and high pCO2 conditions had a significant effect on the incidence of skeletal deformities in S. senegalensis larvae (Figs. 4 and 5; see also Supplementary Table 3). Rising temperature and CO2 levels increased the frequency of total skeletal deformities (Fig. 4a), from 70.9 ± 2.6% at the present-day scenario to 93.2 ± 2.7% under the future conditions (p<0.05), an increase of 31.5%. No cranium or pectoral fin deformities were observed under...
control temperature and $p\text{CO}_2$ rearing conditions. Under the future scenario, caudal vertebra was
the most affected region (Fig. 4d), followed by cranium (Fig. 4b), caudal fin (Fig. 4e),
abdominal vertebra (Fig. 4c), pelvic fin (Fig. 4h), dorsal fin (Fig. 4f), and finally the pectoral
fins (Fig. 4h). In what concerns severe skeletal deformities, $p\text{CO}_2$ was the main factor
contributing to the higher proportion of deformities observed in the future scenario (Fig. 5).
Under present-day conditions, less than 1.9% of the larvae presented severe vertebral curvatures
such as scoliosis (Fig. 5b) or lordosis (Fig. 5c), and no kyphotic larvae were observed (Fig. 5d).
In contrast, all types of severe anomalies significantly increased ($p<0.05$) with future
environmental predictions, especially with high $p\text{CO}_2$. The interaction factor between

temperature and $p\text{CO}_2$ did not have a significant effect ($p>0.05$) on the incidence of skeletal
deformities (including the severe ones), except for abdominal vertebra and dorsal fin
deformities.
Otolith size was also greatly affected by future warming and hypercapnia conditions (Fig. 6; see
also Supplementary Table 1). $S. senegalensis$ larvae experienced a 109.3% increase in otolith
area with increasing temperature and $p\text{CO}_2$ ($p<0.05$). Otolith area increased from 1063.6 ±
398.8 mm2 at the present-day conditions to 1994.5 ± 234.5 mm2 under warming, and then to
2226.2 ± 187.0 mm2 under the combined effect of rising temperature and $p\text{CO}_2$. The interaction
of both factors was however not significant ($p>0.05$).

Discussion

The future predictions of ocean warming and acidification revealed to have a negative impact on
several aspects of the early ontogeny of the environmentally resilient flatfish $S. senegalensis$.
Despite the short embryonic development time of this species (less than 2 days), the warming
experienced during egg incubation was enough to elicit a negative effect on hatching success.
Hatching rates decreased 16.7 percentage points with warming and acidification, in comparison
to the present-day conditions. Moreover, the high temperature and $p\text{CO}_2$ levels had a further
negative effect on larval survival, representing a decrease of 28.4 percentage points in relation
to the present scenario.
As expected, larval growth greatly increased with warming. Increased temperature was
responsible for increasing length by 46.5-48.6%. Nevertheless, it is important to keep in mind
that this increment does not reflect differences in size at a specific stage of development, as
development is accelerated at higher temperatures. In contrast, larval growth decreased under
high $p\text{CO}_2$ levels. Contrary to some studies that have shown that larvae can become bigger
under high $p\text{CO}_2$ conditions (Munday et al., 2009a; Hurst et al., 2012; Hurst et al., 2013), $S.
 senegalensis$ larvae have become almost 25% smaller with increasing $p\text{CO}_2$.

6
A quite identical trend was observed for larval metabolic rates and thermal tolerance limits. While temperature had a positive effect on OCR (within normal Q_{10} values) and thermal tolerance limits, hypercapnic conditions triggered a significant reduction on such physiological parameters. Additionally, and as expected, mass-specific metabolic rates decreased with development, while thermal tolerance limits revealed an opposite ontogenetic trend, i.e., older larvae revealed higher thermal tolerance limits than newly-hatched ones. We presume that exposure to higher pCO_2 might have impaired the acid–base balance regulation, which directly affects the efficiency of cellular activities (Portner et al., 2005; Perry and Gilmour, 2006) and may cause deleterious effects on larval physiology and growth.

Faster growth at higher temperatures could have some advantages, since slower growing larvae are potentially more vulnerable to predators and may thus experience greater mortalities (Anderson, 1988). Nevertheless, growth enhancement with temperature might also present some disadvantages, since faster larval growth was accompanied by an increase in the incidence of skeletal deformities. Indeed, temperature is known to be one of the most important environmental factors that can induce morphological deformities during fish development (Aritaki and Seikai, 2004; Georgakopoulou et al., 2010; Dionisio et al., 2012). Additionally, pH may also affect the prevalence of fish skeletal deformities (Lall and Lewis-McCrea, 2007). Although fish skeleton is predominantly composed by calcium phosphate (in the form of hydroxyapatite and cartilaginous material) (Lall and Lewis-McCrea, 2007), additional buffering of tissue pH with bicarbonate and non-bicarbonate ions is expected by acidified conditions, which may interfere with larval skeletal development. In this study, the future warming and high pCO_2 scenario was responsible for increasing the incidence of total skeletal deformities by 22.2 percentage points, affecting 93.1% of the larvae. Moreover, high pCO_2 was the main responsible for the increase of severe skeletal deformities in flatfish larvae. Under the present-day conditions, less than 1.9% of the larvae presented vertebral curvature deformities such as scoliosis or lordosis, and no kyphotic larvae were observed. In contrast, more than 50% of the larvae under the future environmental scenario presented vertebral curvature deformities. These findings are however in disagreement with a recent study that found no effects of CO$_2$ on the skeletal development of a reef fish (Munday et al., 2011b).

The higher incidence of malformations under the future scenario should however be carefully interpreted. The high percentage of skeletal deformities found in S. senegalensis under control temperature and pCO_2 conditions (70.9 ± 2.7%), although similar to the values commonly found for this species under intensive rearing conditions (Fernandez et al., 2009; Dionisio et al., 2012), may indicate that fish were potentially stressed in captivity and would, therefore, be more susceptible to the negative effects of higher temperature and CO$_2$ levels. Nevertheless, this fact does not exclude the amplifying effect that warming and hypercapnia had on the incidence of skeletal deformities. Even though the increase may be overestimated, the higher rate of
malformations in captive larvae under high temperature and \(p\text{CO}_2 \) conditions may provide an insight of how future warming and acidification may impact the development of wild flatfish larvae and their future performance in a changing ocean.

Skeletal deformities may impair the ecophysiological performance of fish larvae in many different ways. Vertebral curvatures and fin deformities may affect larval swimming behavior, feeding efficiency and the capacity to maintain their position in a current (Powell et al., 2009). Additionally, larvae with cranium deformities, such as ocular migration anomalies, probably will have their capability to feed, attack prey and avoid predators affected. Larvae with operculum deformities may increase gill’s susceptibility to fungus, bacteria and amoebic parasitic infections (Powell et al., 2008) and, as a result, their swimming and cardiovascular performance might be compromised (Powell et al., 2008; Lijalad and Powell, 2009; Powell et al., 2009). Additionally, fish with dental, premaxilar or maxilar deformities cannot adduct their mandible and, besides having potential feeding restrictions, the buccal-opercular pumping of water across gills is also likely to be impaired and compromised (Lijalad and Powell, 2009).

In addition to skeletal deformities, \textit{S. senegalensis} larvae under this future climate change scenario will also be affected by changes in otolith size. \textit{S. senegalensis} larvae experienced a 109.3% increase in otolith area with rising temperature and \(p\text{CO}_2 \). Although otoliths are calcified structures composed of aragonite-protein bilayers, recent studies revealed that pH regulation in otolith endolymph may lead to increased precipitation of calcium carbonate in otoliths of fingerlings exposed to elevated CO\(_2\) (Checkley et al., 2009; Munday et al. 2011a; Bignami et al., 2013). However, this is not a rule among fishes. In at least one coral reef fish species, otolith size was not affected by exposure to elevated \(p\text{CO}_2 \) (Munday et al., 2011b). Otoliths are used by fish to sense orientation, acceleration, perception, and to maintain postural equilibrium. Thus, changes in otolith size may have implications for their ecological performance, behavior and individual fitness (Gagliano et al., 2008; Bignami et al., 2013).

In conclusion, the results presented in our study provide a comprehensive insight about the combined effects of ocean warming and hypercapnia conditions on \textit{S. senegalensis} larval development. Fish larval stages represent a critical life phase for species ecological success. Therefore, climate change-related impairments in metabolism, thermal tolerance, growth, skeletal development and survival may lead to substantial declines in adult populations, putting in jeopardy the species persistence under a climate change scenario.

Material and Methods

\textit{Egg collection and incubation}

\textit{S. senegalensis} eggs were obtained from a wild-caught broodstock of 4 females and 2 males, under natural spawning conditions at IPMA, Estação Piloto de Piscicultura de Olhão (CRIP Sul,
Olhão, Portugal), during June 2012. After collection, eggs were transported and immediately transferred, under environmental controlled conditions, to the aquaculture facilities in Laboratório Marítimo da Guia (Cascais, Portugal). To estimate the potential physiological responses of early life stages to climate change, *S. senegalensis* eggs and larvae were acclimated for one month at: i) 18°C - control temperature, the mean sea surface temperature in summer (sSST) and normocapnia (0.04% CO₂; \(p\text{CO}_2 \approx 400 \mu\text{atm} \)); ii) 18°C and hypercapnia (0.16% CO₂; \(p\text{CO}_2 \approx 1600 \mu\text{atm}; \Delta \text{pH} = 0.5 \)); iii) 22°C - the future sSST warming scenario for the western coast of Portugal in 2100 (+ 4°C above the average summer sea surface temperature, Meehl et al., 2007) and normocapnia; and iv) 22°C and hypercapnia. Prior to releasing the eggs in the rearing tanks, a 2-hour thermal and chemical acclimation was performed.

Eggs and larvae were reared in 12 individual recirculating systems (i.e., 3 systems per treatment), filled with filtered (series of 20, 10, 5 and 0.35 μm) and UV-irradiated natural seawater. Each system comprised a 19 L cylindrical shaped tank (larval rearing tank) connected to a 100 L sump. All rearing tanks were placed inside 400 L water bath tanks (see Supplementary Figure 1), where temperatures (18.0 ± 0.2°C and 22.0 ± 0.2°C) were maintained and controlled via seawater chillers (HC-1000A, Hailea, Guangdong, China), in order to ensure thermo-controlled conditions.

Photoperiod was set at 14 L: 10 D (light:dark cycle). Water filtration was performed through mechanical (glass wool), physical (protein skimmer, Schuran, Jülich, Germany) and biological (ouriço® bioballs, Fernando Ribeiro, Portugal) filters, as well as UV sterilization (TMC, Chorleywood, UK). Throughout the experiment, ammonia and nitrite levels were daily monitored and kept below detectable levels. Temperatures were controlled via seawater chillers (Frimar, Fernando Ribeiro, Portugal), while pH was adjusted automatically via a Profilux system (GHL, Kaiserslautern, Germany) connected to pH probes (WaterTech pH 201S) in the rearing tanks and to a standard solenoid valve system connected to a CO₂ tank. Any seawater pH modifications initiated CO₂ addition (if the pH increased) or CO₂ filtered air injection (if the pH decreased), until pH returned to the set value. Additionally, temperature and pH were daily controlled using a digital thermometer (Ebro thermometer TFX430) and a portable pH meter (SevenGo pro™ SG8, Mettler Toledo). Average values were 18.0 ± 0.2°C and 22.0 ± 0.2°C for temperature and 8.02 ± 0.05 and 7.51 ± 0.05 for pH. Salinity was kept at 35.4 ± 0.4. Seawater carbonate system speciation (Table 3) was calculated weekly from total alkalinity (determined according to (Sarazin et al., 1999) and pH measurements. Bicarbonate and \(p\text{CO}_2 \) values were calculated using the CO2SYS program (Lewis and Wallace, 1998), with dissociation constants from (Mehrbach et al., 1973) as refitted by Dickson and Millero (1987).

Larval rearing
Newly-hatched larvae were randomly placed into rearing tanks (19 L volume each), at a stocking density of 70 larvae per liter. All larvae were reared until 30 days post hatching (dph) under the different experimental conditions. Feeding schedule was based on larval development at each experimental condition. Larvae opened the mouth around 2 dph and started to feed on rotifers, *Brachionus plicatilis*, at a density of 5 to 10 rotifer ml\(^{-1}\). Live enriched (AlgaMac-3050) *Artemia* metanauplii were introduced at 5 dph and their proportion was gradually increased from 0.5 to 12 metanauplii ml\(^{-1}\), becoming the only prey offered at 8 dph. Frozen metanauplii were also introduced as feed after larval settlement.

Hatching success, larval growth and survival

The hatching success was analyzed in small rearing boxes placed inside the rearing tanks (one per rearing system). In the beginning of the experiment, a total of 10 eggs (per box) were randomly placed inside each of the 12 boxes (3 per treatment), and were followed throughout the embryonic development. The hatching success was calculated as the percentage of eggs that hatched to normal larvae. At 0 and 30 dph, 20 larvae per tank (60 larvae per treatment) were randomly sampled and their standard length was measured from the anterior extremity to the urostyle flexion, by means of stereoscopic microscope observations (Leica S6D, Leica Microsystems). The standard length of newly-hatched larvae was 2.57 ± 0.13 mm. The specific embryonic growth rate (SGR) was calculated as:

\[
SGR = \frac{\ln \text{embryo size (T2)} - \ln \text{embryo size (T1)}}{\text{number of days elapsed between } T1 \text{ and } T2} \times 100.
\]

The survival rate was calculated as the percentage of surviving fish by the end of the experiment, with respect to the number of larvae at the beginning of the trial minus those individuals removed for sampling.

Oxygen consumption rates, thermal sensitivity and thermal tolerance limits

Oxygen consumption measurements were determined according to previously established methods (Pimentel et al. 2012; Rosa et al., 2012). Nine newly-hatched (0 dph) and nine 30 dph larvae were incubated at each of the four treatment conditions, in sealed water-jacketed respirometry chambers (RC300 Respiration cell, Strathkelvin Instruments limited, North Lanarkshire, Scotland) containing 0.35-µm filtered and UV-irradiated seawater mixed with antibiotics (50 mg L\(^{-1}\) streptomycin), in order to avoid bacterial respiration. Water volumes were adjusted in relation to animal mass (up to 10 mL) in order to minimize locomotion and stress but still allow for spontaneous and routine activity of the hatchlings. Controls (blanks) were used to correct for possible bacterial respiratory activity. Respiration chambers were immersed in water baths (Lauda, Lauda-Königshofen, Germany) to control temperature. Oxygen
concentrations were recorded with Clarke-type O$_2$ electrodes connected to a multi-channel oxygen interface (Model 928, Strathkelvin Instruments limited, North Lanarkshire, Scotland). The duration of respiratory runs varied between 3 to 6 h. Thermal sensitivity (Q$_{10}$) was determined using the standard equation:

\[Q_{10} = \left(\frac{R(T_2)}{R(T_1)} \right)^{\frac{10}{T_2 - T_1}}, \]

where \(R(T_1) \) and \(R(T_2) \) represent the oxygen consumption rates at temperatures \(T_1 \) and \(T_2 \), respectively.

Upper thermal tolerance limits were determined based on previously established methods (Stillman and Somero, 2000). In brief, 0 and 30 dph larvae were incubated in glass containers with approximately 100 mL of 0.35-µm filtered and UV-irradiated seawater collected from the rearing tanks. Each container was stocked with 20 specimens, and a total of 3 containers were used per experimental treatment. These glass containers were suspended in a temperature regulated water bath that was controlled to the nearest 0.1°C. Water bath temperature was set to the acclimation temperature and maintained for 30 min. Thereafter, temperature was increased at a rate of 1°C/30 min. Seawater was aerated by means of an air stone and the temperature in each container was checked with thermocouple probes. Every 30 min, if no responsiveness was noticed, the specimen was considered to be dead. The percentage of live individuals at each temperature was calculated, and then transformed by the arcsine square root function and expressed in radians. Linear-regression analysis was then used to find the slope of the line, and the temperature at which 50% of the organisms had died (0.785 radians) was calculated. This was used as a measure of upper thermal tolerance limits and referred to as the LT50. Critical thermal maximum (CTMax) was calculated using the equation:

\[CTMax = \frac{\sum T_{\text{end-point}, n}}{n}, \]

where \(T_{\text{end-point}} \) is the temperature at which the end-point was reached for individual 1, individual 2, individual \(n \), divided by the \(n \) individuals that were in the sample.

Skeletal deformities and otolith morphometrics

To identify and quantify larval skeletal deformities, 20 larvae per rearing tank (60 larvae per treatment) were randomly sampled and fixed in 4% (v/v) buffered paraformaldehyde for 24 h and then transferred to 70% ethanol until double stained. Larvae were stained for bone and cartilage using a modification of the method described by Walker and Kimmel (2007), and observed under a stereoscopic microscope (Leica S6D, Leica Microsystems), in order to identify skeletal deformities. Skeletal deformities were defined according to previously established methods (Wagemans et al., 1998; Gavaia et al., 2002; Deschamps et al., 2008; Fernandez et al., 2009; Dionisio et al., 2012). Deformities were divided into several categories according to the affected structure (e.g., cranium, abdominal vertebra, caudal vertebra, caudal fin, dorsal fin,
pectoral fin and pelvic fin), and are described in Table 2. Skeletal deformities such as scoliosis, lordosis, kyphosis, multiple vertebral fusions or more than three anomalies per individual were considered severe deformities. Skeletal deformities were quantified as the percentage of fish exhibiting a specific deformity.

In order to analyze otolith area, 20 larvae per rearing tank (60 larvae per treatment) were randomly selected, measured and preserved in absolute ethanol. The left and right sagittal otoliths of each individual were removed and photographed under a stereoscopic microscope (Leica S6D, Leica Microsystems). Otolith area was measured using the ImageJ program©. Otolith area was calculated as the mean of the right and left otoliths, and normalized to fish length.

Statistical analysis

ANOVA was used to test for significant differences between the tanks of each experimental treatment. Since no differences were found between tanks, all the samples from the same treatment were pooled and analyzed together. Two-way ANOVA were then conducted in order to detect significant differences in hatching success, larval survival, standard length, SGR, skeletal deformities and otolith size between temperature and pCO2 treatments. Three-way ANOVA were applied to detect significant differences in OCR, LT50 and CTMax between temperature and pCO2 treatments and development stage (0 and 30 dph). Subsequently, post-hoc Tukey HSD tests were performed. All statistical analyses were performed for a significance level of 0.05, using Statistica 10.0 software (StatSoft Inc., Tulsa, USA).

Acknowledgements

We would like to thank CRIP Sul for supplying fish eggs, and to Oceanário de Lisboa and Aquário Vasco da Gama for supplying rotifers and microalgae. We also thank Lloyd Trueblood for helpful suggestions and critically reviewing the manuscript. The Portuguese Foundation for Science and Technology (FCT) supported this study through doctoral grants to MSP (SFRH/BD/81928/2011) and GD (SFRH/BD/73205/2010), a post-doc grant (SFRH/BPD/79038/2011) to FF and project grant to RR (PTDC/AAG-GLO/3342/2012).

Author contributions

R.R. designed the experiment; M.S.P. and F.F. performed the experiment; M.S.P., F.F., G.D., T.R., P.P., J.M. and R.R. analyzed data; M.S.P., F.F. and R.R. wrote the main paper. All authors discussed the results and their implications, and commented on the manuscript at all stages.
References

Table 1 - Thermal sensitivity (Q_{10}) between 18 and 22°C of 0 and 30 dph *Solea senegalensis* larvae at normo- and hypercapnia.

<table>
<thead>
<tr>
<th>Development stage</th>
<th>pH</th>
<th>Q_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 dph</td>
<td>7.5</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>2.62</td>
</tr>
<tr>
<td>30 dph</td>
<td>7.5</td>
<td>2.77</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>2.79</td>
</tr>
</tbody>
</table>
Table 2 - Types of skeletal deformities considered in this study (adapted from Wagemans et al., 1998; Gavaia et al., 2002; Dionísio et al., 2012).

<table>
<thead>
<tr>
<th>Affected area</th>
<th>Types of skeletal deformities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cranium</td>
<td>Jaw deformities</td>
<td>Malformed and/or reduced maxillary, premaxillary, angular and/or dentary bones</td>
</tr>
<tr>
<td></td>
<td>Ocular migration deformities</td>
<td>Incomplete or non-existent ocular migration</td>
</tr>
<tr>
<td></td>
<td>Deformed opercle</td>
<td>Deformed opercular, ceratobranchial and ceratohyal bones</td>
</tr>
<tr>
<td>Abdominal vertebra</td>
<td>Vertebral body malformation</td>
<td>Torsion and/or malformation of one or more vertebrae</td>
</tr>
<tr>
<td></td>
<td>Vertebral fusion</td>
<td>Partial or total fusion of two or more vertebrae</td>
</tr>
<tr>
<td></td>
<td>Vertebral compression</td>
<td>Partial or total compression of two or more vertebrae</td>
</tr>
<tr>
<td></td>
<td>Malformed neural and/or haemal arch</td>
<td>Deformed, absent or fused</td>
</tr>
<tr>
<td></td>
<td>Malformed neural and/or haemal spine</td>
<td>Deformed, absent or fused</td>
</tr>
<tr>
<td></td>
<td>Malformed parapophysis</td>
<td>Deformed, absent, fused or supernumerary</td>
</tr>
<tr>
<td></td>
<td>Scoliosis</td>
<td>Side-to-side vertebral curvature</td>
</tr>
<tr>
<td></td>
<td>Lordosis</td>
<td>Excessive inward vertebral curvature</td>
</tr>
<tr>
<td></td>
<td>Kyphosis</td>
<td>Excessive outward vertebral curvature</td>
</tr>
<tr>
<td>Caudal vertebra</td>
<td>Vertebral body malformation</td>
<td>Torsion and/or malformation of one or more vertebrae</td>
</tr>
<tr>
<td></td>
<td>Vertebral fusion</td>
<td>Partial or total fusion of two or more vertebrae</td>
</tr>
<tr>
<td></td>
<td>Vertebral compression</td>
<td>Partial or total compression of two or more vertebrae</td>
</tr>
<tr>
<td></td>
<td>Malformed neural and/or haemal arch</td>
<td>Deformed, absent, asymmetric or fused</td>
</tr>
<tr>
<td></td>
<td>Malformed neural and/or haemal spine</td>
<td>Deformed, absent, asymmetric or fused</td>
</tr>
<tr>
<td></td>
<td>Scoliosis</td>
<td>Side-to-side vertebral curvature</td>
</tr>
<tr>
<td></td>
<td>Lordosis</td>
<td>Excessive inward vertebral curvature</td>
</tr>
<tr>
<td>Caudal fin complex</td>
<td>Malformed hypural</td>
<td>Deformed, absent, asymmetric, fused or supernumerary</td>
</tr>
<tr>
<td></td>
<td>Malformed epural</td>
<td>Deformed, absent, asymmetric, fused or supernumerary</td>
</tr>
<tr>
<td></td>
<td>Malformed parahypural</td>
<td>Deformed, absent, asymmetric, fused or supernumerary</td>
</tr>
<tr>
<td></td>
<td>Malformed fin rays</td>
<td>Deformed, absent, asymmetric, fused or supernumerary</td>
</tr>
<tr>
<td>Dorsal fin</td>
<td>Malformed fin rays</td>
<td>Deformed, absent, asymmetric, fused or supernumerary</td>
</tr>
<tr>
<td></td>
<td>Malformed pterygiophores</td>
<td>Deformed, absent, fused or supernumerary</td>
</tr>
<tr>
<td>Pectoral/pelvic fin</td>
<td>Malformed fin rays</td>
<td>Deformed, absent, asymmetric, fused or supernumerary</td>
</tr>
</tbody>
</table>
Table 3 - Seawater carbonate chemistry data for the different climate change scenarios.
Total carbon (C_T), carbon dioxide partial pressure (pCO_2), bicarbonate concentration (HCO_3^-) and aragonite saturation state of seawater (Ω_{arag}) were calculated with CO2SYS using salinity, temperature, pH and total alkalinity (A_T). Values are means ± SD.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>pH (Total scale)</th>
<th>A_T [µmol kg^-1 SW]</th>
<th>C_T [µmol/kg^-1 SW]</th>
<th>pCO_2 [µatm]</th>
<th>HCO_3^- [µmol kg^-1]</th>
<th>Ω_{arag}</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.02 ± 0.42</td>
<td>8.03 ± 0.05</td>
<td>2335.74 ± 89.09</td>
<td>2148.20 ± 81.43</td>
<td>424.53 ± 19.97</td>
<td>1985.25 ± 75.28</td>
<td>2.24 ± 0.08</td>
</tr>
<tr>
<td>22.12 ± 1.01</td>
<td>7.51 ± 0.05</td>
<td>2317.40 ± 36.40</td>
<td>2314.73 ± 36.72</td>
<td>1654.20 ± 49.06</td>
<td>2194.88 ± 34.84</td>
<td>0.78 ± 0.01</td>
</tr>
<tr>
<td>18.20 ± 0.40</td>
<td>8.02 ± 0.04</td>
<td>2305.70 ± 80.54</td>
<td>2141.80 ± 76.78</td>
<td>400.00 ± 66.71</td>
<td>1993.35 ± 72.21</td>
<td>1.95 ± 0.07</td>
</tr>
<tr>
<td>18.15 ± 0.29</td>
<td>7.50 ± 0.03</td>
<td>2281.07 ± 61.89</td>
<td>2290.90 ± 62.73</td>
<td>1607.90 ± 24.78</td>
<td>2173.55 ± 59.50</td>
<td>0.67 ± 0.02</td>
</tr>
</tbody>
</table>
Figure captions

Figure 1 - Effect of ocean warming and acidification on the early stages of *Solea senegalensis*. Hatching success (n=30) (a) and survival rate (n=3) (b), standard length (n=60) (c) and specific growth rate (SGR) (n=60) (d) of 30 dph larvae at different temperature and pH scenarios. Values are given in mean ± SD. Different letters represent significant differences between the different climate scenarios (p<0.05) (more statistical details in Supplementary Table 1).

Figure 2 - Impact of ocean warming and acidification on the metabolism and thermal tolerance of *Solea senegalensis* larvae. Oxygen consumption rates (OCR) (n=9) (a), upper thermal tolerance limits (LT50) (n=30) (b), and critical thermal maximum (CTMax) (n=30) (c) of 0 and 30 dph larvae (dark and light grey, respectively) at different temperature and pH scenarios. Values are given in mean ± SD. Different letters represent significant differences between the different climate scenarios (p<0.05). Asterisks represent significant differences between the two developmental stages (p<0.05) (more statistical details in Supplementary Table 2).

Figure 3 - Skeletal deformities of 30 dph *Solea senegalensis* larvae under the effect of ocean warming and acidification. Cranium deformity, ocular migration anomaly (a); opercle and cranium deformity (b); vertebra fusion and compression, deformed spines, arches and parapophysis (c); vertebra fusion and deformed spines and arches (d); vertebra fusion, urostyle fusion and caudal fin complex anomalies such as modified neural and hemal spine, hypural and fin rays (e); vertebra fusion and compression, deformed spines and arches (f); vertebral fusion, deformed hypural and modified hemal spines (g); pelvin fin deformity (h); scoliosis (i); lordosis and kyphosis (j).

Figure 4 - Incidence of skeletal deformities in *Solea senegalensis* larvae under the effect of ocean warming and acidification. Total skeletal deformities of 30 dph larvae at different temperature and pH scenarios (a), which include deformities in the cranium (b), abdominal vertebra (c), caudal vertebra (d), caudal fin complex (e), dorsal fin (f), pectoral fin (g), and pelvic fin (h). Values are given in mean ± SD (n=60). Different letters represent significant differences between the different climate scenarios (p<0.05) (more statistical details in Supplementary Table 3).

Figure 5 - Incidence of severe skeletal deformities in *Solea senegalensis* larvae under the effect of ocean warming and acidification. Total severe skeletal deformities (a) and severe
vertebral curvatures such as lordosis (b), scoliosis (c), and kyphosis (d) of 30 dph larvae at
different temperature and pH scenarios. Values are given in mean ± SD (n=60). Different letters
represent significant differences between the different climate scenarios (p<0.05) (more
statistical details in Supplementary Table 3).

Figure 6 - Effect of ocean warming and acidification on otolith size of 30 dph Solea
senegalensis larvae. Otolith area at different temperature and pH scenarios. Values are given in
mean ± SD (n=60). Different letters represent significant differences between the different
climate scenarios (p<0.05) (more statistical details in Supplementary Table 1).
Figure 1

Hatching success (%)

Larval survival (%)

Larval SGR (% day⁻¹)

Larval length (mm)

18°C pH8 18°C pH7.5 22°C pH8 22°C pH7.5

18°C pH8 18°C pH7.5 22°C pH8 22°C pH7.5
Figure 2

(a) Oxygen consumption rate (OCR) [µmol O₂ h⁻¹ g⁻¹ ww] at different temperatures and pH levels. Bars with different letters indicate significant differences.

(b) LT₅₀ [ºC] at various conditions. Bars with different letters indicate significant differences.

(c) CT₅₀ [ºC] at different conditions. Bars with different letters indicate significant differences.
Figure 4

Abdominal vertebra abnormalities (%)

Pelvic fin abnormalities (%)

Cranium abnormalities (%)

Total skeletal abnormalities (%)

Caudal vertebra abnormalities (%)

Caudal fin abnormalities (%)

Dorsal fin abnormalities (%)

Pectoral fin abnormalities (%)
Figure 5

(a) Total severe abnormalities (%)
(b) Scoliosis (%)
(c) Lordosis (%)
(d) Kyphosis (%)

18°C pH 8 18°C pH 7.5 22°C pH 8 22°C pH 7.5

Different letters denote significant differences at P < 0.05.
Figure 6

![Graph showing otolith area (mm²) at different temperatures and pH levels:]

- **18°C pH 8**
- **18°C pH 7.5**
- **22°C pH 8**
- **22°C pH 7.5**

The graph indicates that the otolith area varies significantly across these conditions, with **22°C pH 7.5** showing the largest area.