Dimiconin, a novel coagulation inhibitor from the kissing bug, *Triatoma dimidiata*, a vector of Chagas disease

Running Title: a novel anticoagulant from a kissing bug

Yuka Ishimaru¹, Eduardo A. Gomez², Feifei Zhang³, Luiggi Martini-Robles⁴, Hiroyuki Iwata¹, Tatsuya Sakurai³, Ken Katakura³, Yoshihisa Hashiguchi⁵,⁶,⁷, Hirotomo Kato¹,³*¹

¹Laboratory of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan, ²Programa de Leishmaniasis, Servicio Nacional de Erradicacion de la Malaria (SNEM), Ministerio de Salud Publica, Ecuador, ³Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan, ⁴Departamento de Parasitologia, Instituto Nacional de Higiene y Medicina Tropical ‘Leopoldo Izquieta Perez’, Ecuador, ⁵Prometeo, Secretaria Nacional de Educacion Superior, Ciencia, Tecnologia e Innovacion (SENESCYT), Ecuador, ⁶Universidad Central del Ecuador Centro de Biomedicina, Quito, Ecuador, ⁷Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan.

*Corresponding author at: Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18 West 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.

Phone & Fax: +81-11-706-5196.

E-mail address: hkato@vetmed.hokudai.ac.jp
SUMMARY

Sequence analysis of *Triatoma* (*T.*) *dimidiata* salivary gland cDNA library resulted in the identification of two transcripts (Td60 and Td101) homologous to triabin, an inhibitor of thrombin in *T. pallidipennis* saliva. In the present study, a recombinant protein of Td60, designated dimiconin, was expressed in *Escherichia coli* and its activity was characterized. The resulting protein inhibited the intrinsic but not extrinsic blood coagulation pathway, suggesting that dimiconin is not a thrombin inhibitor. Measuring the enzymatic activity of coagulation factors using chromogenic substrates revealed that dimiconin efficiently inhibited factor XIIa (FXIIa) activity in a dose-dependent manner. In addition, pre-incubation of dimiconin with FXII effectively inhibited FXIIa activity whereas dimiconin did not affect already activated FXIIa, indicating that dimiconin inhibits the activation of FXII but not enzymatic activity of FXIIa. These results showed that dimiconin is an inhibitor of the contact phase initiated by FXII activation in the blood coagulation cascade, which differs from the bioactivity of triabin.

Key Words: anticoagulant, saliva, *Triatoma dimidiata*
INTRODUCTION

Hematophagous insects have evolved a wide set of pharmacologically active molecules to counteract host hemostatic processes (Ribeiro, 1995; Ribeiro and Francischetti, 2003; Fontaine et al., 2011). When probing in the host skin for blood feeding, they inject saliva, a cocktail of bioactive agents, containing anticoagulants, vasodilators, and inhibitors of platelet aggregation induced by collagen, adenosine diphosphate (ADP), arachidonic acid or thrombin (Ribeiro, 1995; Ribeiro and Francischetti, 2003; Champagne, 2005; Andersen et al., 2005; Valenzuela, 2005). Other salivary molecules almost certainly involved in the feeding process include antihistamine, sialidase, serine protease, sodium channel blockers, immunosuppressants and pore-forming molecules (Ribeiro, 1995; Ribeiro and Francischetti, 2003; Champagne, 2005; Andersen et al., 2005; Valenzuela, 2005). Since hematophagous arthropods have evolved their feeding strategy independently, different types of molecules have developed to overcome host hemostatic defenses in different species (Ribeiro, 1995; Champagne, 2005). Therefore, insect salivary components have been extensively studied in various species to understand their unique physiological activities and have attracted attention as novel candidates for natural pharmacological agents (Ribeiro, 1995; Champagne, 2005; Fontaine et al., 2011).

Triatomine bugs are large blood-sucking insects, and species belonging to tribes Triatomini and Rhodniini are involved in the transmission of Trypanosoma cruzi, a causative agent of Chagas disease in Latin America (Beard, 2004). They feed directly from the blood vessel for 20-30 min efficiently regardless of the host hemostatic response, suggesting the presence of strong and unique bioactive substances
in their saliva (Martínez-Ibarra et al., 2001). To discover unique pharmacologically active agents, salivary components of triatomine bugs have been explored in *Rhodnius (R.) prolixus* (Ribeiro et al., 2004), *Triatoma (T.) brasiliensis* (Santos et al., 2007), *T. infestans* (Assumpção et al., 2008), *T. dimidiata* (Kato et al., 2010) and *Dipetalogaster (D.) maxima* (Assumpção et al., 2011) by salivary gland transcriptome analyses. Characteristically, their salivary components were rich in lipocalins, a large group of extracellular proteins that bind and transport small hydrophobic molecules. Lipocalins are remarkably diverse at the sequence level; however, they share sufficient similarity in the form of short characteristic conserved sequence motifs and their structure is highly conserved (Flower, 1996). Triabin is a lipocalin protein identified from the saliva of *T. pallidipennis*, and functions as an inhibitor of thrombin resulting in the inhibition of thrombin-induced platelet aggregation as well as blood coagulation (Noeske-Jungblut et al., 1995). Various lipocalins having homology with triabin have been identified from salivary transcripts of triatomine bugs (Ribeiro et al., 2004; Santos et al., 2007; Assumpção et al., 2008, 2011; Kato et al., 2010), and some of them have been functionally characterized; pallidipin 2 as a collagen-induced platelet aggregation inhibitor in *T. pallidipennis* (Noeske-Jungblut et al., 1994), *Rhodnius prolixus* aggregation inhibitor 1 (RPAI-1) as a platelet aggregation inhibitor in *R. prolixus* (Francischetti et al., 2000), and triafestin-1 and -2 as plasma kallikrein-kinin system inhibitors in *T. infestans* (Isawa et al., 2007).

Recently, a transcriptome-based analysis of the salivary gland of *T. dimidiata* resulted in the identification of transcripts homologous to *T. pallidipennis* triabin, an inhibitor of thrombin activity (Kato et al., 2010). In the present study, a recombinant
1 *T. dimidiata* triabin-like protein (designated “dimiconin”) was prepared and its activity was characterized.
MATERIALS AND METHODS

Sequence analysis
The sequences were aligned with CLUSTAL W software (Thompson et al., 1994) and examined using the program MEGA (Molecular Evolutionary Genetics Analysis) version 4.0 (Tamura et al., 2007). Phylogenetic trees were constructed by the neighbor-joining method with the distance algorithms in the MEGA package. Bootstrap values were determined with 1,000 replicates of the data sets.

Production and purification of recombinant dimiconin
A DNA fragment encoding a mature dimiconin was amplified and inserted into the XhoI site of an N-terminal thioredoxin (Trx)-hexahistidine (His)-tagged fusion plasmid vector, pET-32b(+) (Novagen, Drams, Germany). The XhoI adaptor-ligated primers used for PCR amplification of the dimiconin encoding fragments were

Xho-Td60-S (5’-ttctctcg agGAACACTGTGCAACAAGAAAA-3’) and Xho-Td60-R (5’-ttctctcg agTCACTTTAATTGAATGATA-3’). Escherichia coli (E. coli) BL21 (DE3) cells were transformed with the recombinant plasmid and grown in Luria-Bertani (LB) medium containing ampicillin (50 μg/ml). Production of the Trx-His-tagged recombinant dimiconin was induced by the addition of isopropyl β-D-thiogalactoside (IPTG) to a final concentration of 0.5 mM. The BL21 cells suspended in binding buffer (20 mM sodium phosphate, 500 mM NaCl, 20 mM imidazol, pH 7.4) were sonicated, and recombinant protein was purified from the soluble fraction using His GraviTrap (GE Healthcare, Buckinghamshire, UK) and finally dialyzed against phosphate-buffered saline (PBS). Trx-His-tagged protein
only was expressed and purified to be used as a control.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analysis

The samples were treated with SDS sample buffer [125 mM Tris-HCl (pH 6.8), 4.5% SDS, 20% glycerol, 0.01% bromophenol blue and 10% 2-mercaptoethanol] and analyzed in a 10% polyacrylamide gel. To estimate the molecular weight of the samples, Precision Plus Protein Standards (Bio-Rad Laboratories, Hercules, CA, USA) were used. After electrophoresis, the gel was stained with coomassie brilliant blue.

For the immunoblot analysis, the proteins in the gel were transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, MA, USA). After blocking with 5% skim milk in PBS for 1 hour at room temperature, the membrane was incubated overnight at 4 °C with mouse anti-His antibody (GE Healthcare) or serum from a mouse repeatedly subjected to blood-sucking by *T. dimidiata*. After three washes with PBS containing 0.1% Tween 20 (PBS-T), the membrane was further incubated with alkaline phosphatase (AP)-conjugated goat anti-mouse immunoglobulin (Zymed laboratories, San Francisco, CA, USA) for 1 hour at room temperature. After another three washes with PBS-T, the blots were developed by adding a substrate (Alkaline Phosphatase Conjugate Substrate Kit; Bio-Rad Laboratories) and visualized.

Effect of dimiconin on plasma coagulation

The effect of dimiconin on plasma coagulation was tested by examining prothrombin time (PT) and activated partial thromboplastin time (APTT). Forty-five
microliters of citrated normal human plasma was mixed with 5 μl of Trx-His-tagged
dimiconin or Trx-His-tag protein with a final concentration of 45, 22.5, 11.3 or 5.6 μM
and incubated for 3 min at 37°C. Plasma coagulation was activated for 3 min at 37°C
with 100 μl of PT reagent (thromboplastin from rabbit brain; Sysmex, Hyogo, Japan) for
the PT assay, or for 1 min at 37°C with 50 μl of APTT reagent (synthetic phospholipid;
Sysmex) followed by 50 μl of 0.02 M CaCl2 for 2 min at 37°C for the APTT assay.
The clot formation was measured using a CA-50 coagulometer (Sysmex).

Effect of dimiconin on the intrinsic pathway of blood coagulation

The effect of dimiconin on the intrinsic coagulation pathway was assessed based
on the generation of activated coagulation factors (FIXa, FXa, and FXIIa). Fifty
microliters of citrated human plasma diluted 1: 9 in 20 mM Hepes buffer (pH 7.35) was
pre-incubated for 5 min at 37°C with 15 μl of serially-diluted dimiconin. The mixture
was activated by adding 5 μl of APTT reagent for 10 min at 37°C followed by 5 μl of
0.02 M CaCl2. After 1 min at 37°C, 25 μl of chromogenic substrate was added to a
final concentration of 0.5 mM (Decrem et al., 2009), and the amidolytic activity of the
enzyme generated was determined at a wavelength of 405 nm using a microplate reader
(iMark: Bio-Rad Laboratories). The chromogenic substrates used were as follows:
SPECTROZYME FIXa (American Diagnostica, Greenwich, CT, USA) for FIXa,
SPECTROZYME FXa (American Diagnostica) for FXa, SPECTROZYME FXIIa
(American Diagnostica) for FXIIa and SPECTROZYME P.Kal (American Diagnostica)
for kallikrein assay. Soybean trypsin inhibitor, an inhibitor of plasma kallikrein
(SBTI; Wako Pure Chemical Industries, Osaka, Japan) was added for the FXIIa assay to
a final concentration of 20 nM (Isawa et al., 2007). In a separate study, the effect of T.
dimidiata salivary gland homogenate (SGH) on FXII was addressed.

Effect of dimiconin on FXII

The effect of dimiconin on FXII activation was assessed as follows: human FXII (final concentration, 0.2 μM) (Haematologic Technologies Inc., Essex Junction, VT, USA) was pre-incubated with serially diluted dimiconin for 5 min at 37°C in the presence of ZnCl₂ (0.5 mM), and activated by addition of 5 μl of APTT reagent (Sysmex) for 5 min at 37°C. The effect of dimiconin on the enzymatic activity of FXIIa was assessed as follows: human FXII (0.2 μM) (Haematologic Technologies Inc.) was activated with 5 μl of APTT reagent (Sysmex) for 5 min at 37°C in the presence of ZnCl₂ (0.5 mM), and then incubated with serially diluted dimiconin for 5 min at 37°C. The activity of FXIIa was measured using the chromogenic substrate SPECTROZYME FXIIa (American Diagnostica).
RESULTS

Sequence analysis

By sequencing a T. dimidiata salivary gland cDNA library, we identified two transcripts (Td60 and Td101) coding for proteins homologous to triabin, a selective thrombin inhibitor from the saliva of T. pallidipennis (Noeske-Jungblut et al., 1995; Fuentes-Prior et al., 1997). The first transcript (Td60) coded for a protein of 196 amino acid residues containing 21 amino acid signal peptide with a predicted molecular mass of 20.3 kDa and a calculated isoelectric point of 4.96 in the mature form (Fig. 1), and the second transcript (Td101) coded for a protein of 193 amino acid residues with a predicted molecular mass of 20.0 kDa and a calculated isoelectric point of 5.51 in the mature form (GenBank accession numbers: BAI50848 and BAI50851, respectively). The amino acid sequences of Td60 and Td101 shared 62% and 58% identity with triabin, respectively. The amino acid sequence of Td60 was aligned with that of triabin. The GXW motif, which is often observed in lipocalins, was conserved in Td60, and five cysteine residues in the putative mature proteins were located at the corresponding positions (Fig. 2A). A phylogenetic analysis was performed with salivary proteins homologous to triabin from various triatomine bugs. Of these, triabin, pallidipin 2, RPAI-1, and triafestin-1 and -2 were functionally characterized whereas others were proteins with unknown function although most of them were named as triabin-like on the basis of their sequence similarities. Td60 and Td101 showed closer relationships with triabin than any other triabin-like salivary proteins from various triatomine bugs including functionally characterized proteins such as pallidipin 2, RPAI-1 and triafestins (Fig. 2B). A triabin-like protein from T. dimidiata, Td60, was designated
“dimiconin” and its biological function was analyzed.

Production and purification of recombinant dimiconin

To characterize the biological function of dimiconin, the recombinant protein was expressed in *E. coli* as a Trx-His-tagged fusion protein and purified from the soluble fraction of the *E. coli* lysate. Trx-His-tagged dimiconin had a molecular mass of about 37 kDa according to polyacrylamide gel electrophoresis and reacted to anti-His antibody in the immunoblot analysis (Fig. 3A and 3B). The antigenicity of Trx-His-tagged dimiconin was assessed by immunoblotting with serum from a mouse repeatedly exposed to *T. dimidiata*. The immune serum reacted to the Trx-His-tagged dimiconin but not Trx-His-tagged protein, indicating that the recombinant protein maintained the antigenicity of a *T. dimidiata* salivary protein (Fig. 3C).

Dimiconin inhibits the activation of the contact phase of the intrinsic blood coagulation pathway

Triabin inhibits thrombin activity resulting in inhibition of thrombin-induced platelet aggregation as well as blood coagulation (Noeske-Jungblut et al., 1995). To investigate the biological function of dimiconin, its effect on plasma coagulation was examined by measuring PT and APTT. Dimiconin prolonged APTT in a dose-dependent manner (Fig. 4) but did not affect PT. The result indicated that dimiconin is an inhibitor of intrinsic blood coagulation, which is different from the bioactivity of triabin. The most apparent structural difference between dimiconin and triabin is observed in the C-terminal where triabin lacks about 30 amino acids (Fig. 2A). A mutant dimiconin lacking 30 C-terminal amino acids (dimiconin ΔC30) was prepared
and its activity was addressed. Similar to dimiconin, dimiconin ΔC30 prolonged APTT but not PT (data not shown), indicating that the C-terminal 30 amino acids are not responsible for the difference in activity between dimiconin and triabin.

The intrinsic blood coagulation pathway is initiated when FXII binds to a negatively charged surface such as that of endothelial cells, and this pathway is associated with factors FVIII, FIV, FXI, FXII, prekallikrein, and high-molecular weight (HMW) kininogen (Mans and Neitz, 2004; Isawa et al., 2007; Renné, 2011). To characterize the mechanism involved in the anti-coagulation activity of dimiconin, an amidolytic assay was performed using chromogenic substrates specific to FIXa, FXa, FXIIa and kallikrein. The enzymatic activities of FIXa, FXa and FXIIa were markedly inhibited by dimiconin at higher concentrations, but not by a Trx-His-tagged control (Fig. 5A-C). Dimiconin had a limited impact on kallikrein activity. At lower concentrations, an inhibitory effect was observed on FXIIa activity but the effect on FIXa and FXa activities was weak, suggesting that the primary target of dimiconin is FXII (Fig. 5A-C). The IC₅₀ value of dimiconin was estimated to be 35.7 μM for FIXa, 12.9 μM for FXa, and 8.6 μM for FXIIa. An inhibitory effect on FXIIa activity was demonstrated in the salivary gland homogenate of *T. dimidiata* (supplemental figure 1). To determine whether dimiconin inhibits the activation of FXII or enzymatic activity of FXIIa, FXII was treated with dimiconin before or after activation and then the activity of FXIIa was measured. As shown in Fig. 6, pre-treatment of FXII with dimiconin inhibited FXIIa activity in a dose-dependent manner, whereas dimiconin did not inhibit the activated FXII, suggesting that dimiconin inhibits the activation of FXII but not activity of FXIIa. Platelet aggregation induced by ADP or collagen was not affected by dimiconin (data not shown).
DISCUSSION

Recently, a large number of transcripts from the salivary glands of *T. dimidiata* were sequenced and transcripts (Td60 and Td101) coding for a lipocalin protein homologous to triabin, a thrombin inhibitor identified from *T. pallidipennis* saliva, were identified (Kato et al., 2010). In the present study, a recombinant protein was produced from the transcript Td60, and its biological activity was characterized. The protein, dimiconin, efficiently inhibited intrinsic blood coagulation by targeting the activation of FXII, indicating that dimiconin plays an important role in the blood-feeding process in *T. dimidiata*.

Lipocalins are a family of extracellular proteins which bind and transport small hydrophobic molecules (Flower, 1996). Although they display unusually low levels of overall sequence conservation with pairwise sequence identity often falling below 20%, their three-dimensional structures are highly conserved (Flower, 1996). To date, several salivary lipocalins having homology with triabin have been functionally characterized from triatomine bugs; pallidipin 2 from *T. pallidipennis* and RPAI-1 from *R. prolixus* as platelet aggregation inhibitors (Noeske-Jungblut et al., 1994; Francischetti et al., 2000), and triafestins from *T. infestans* as plasma kallikrein-kinin system inhibitors (Isawa et al., 2007). Interestingly, the bioactivities of these proteins were different from that of triabin. Since dimiconin showed much higher homology with triabin than any other “triabin-like” protein, we initially expected it to function like triabin as an inhibitor of thrombin in *T. dimidiata* saliva. Moreover, dimiconin prolonged APTT, an indicator of intrinsic coagulation, but not PT, an indicator of the extrinsic pathway. This result was unexpected because the inhibition of thrombin
activity should affect both coagulation assays. Overall, dimiconin shows a high
degree of similarity to triabin at the amino acid level, but marked diversity between the
two was noted in the C-terminal where triabin lacks about 30 amino acids. Although
a mutant dimiconin lacking this region (dimiconin ΔC30) was functionally addressed,
its activity was similar to that of the original dimiconin, indicating that other amino
acids are responsible for their different functions.

The intrinsic pathway involves FXII, FXI, FIX, prekallikrein and high-molecular
weight kininogen. The pathway is initiated by the binding of FXII to negatively
charged surfaces resulting in the conversion of FXII into the serine protease FXIIa.
FXIIa converts prekallikrein into kallikrein and FXI into FXIa, followed by activation
of FIX and then FX to generate FXa (Shan et al., 2003; Decrem et al., 2009). A
common pathway leads to the generation of thrombin from prothrombin and ultimately
produces insoluble fibrin from fibrinogen (Decrem et al., 2009; Fontaine et al., 2011).
When the enzymatic activity of coagulation factors was measured using chromogenic
substrates, FXIIa activity was found to be markedly inhibited by dimiconin in a
dose-dependent manner. Although dimiconin inhibited FIXa and FXa activities
efficiently at higher concentrations, the inhibition was diminished at a lower dose.
These results strongly suggested that dimiconin is an inhibitor of FXII, and the
downstream pathway of the intrinsic coagulation cascade such as activation of FIX and
FX was inhibited under conditions where FXIIa activity was completely abrogated by
higher doses of dimiconin. Further study showed that dimiconin inhibits the
activation of FXII, but not activity of FXIIa. Thus, dimiconin is considered to target
mainly the contact phase initiated by FXII activation in the blood coagulation cascade.
Triafestins from *T. infestans* saliva were characterized as a contact phase inhibitor that
prevent activation of the kallikrein-kinin system by interfering with the association of
FXII and HMW kininogen with biological activating surfaces (Isawa et al., 2007).
Dimiconin had little effect on the enzymatic activity of kallikrein even at higher
concentrations, suggesting that it acts on the contact phase via a different mechanism
from triafestins.

In the present study, a recombinant triabin-like salivary protein from *T. dimidiata*,
named dimiconin, was produced by *E. coli* and characterized as to its inhibitory effect
on the contact phase of the blood coagulation cascade. Therefore, this protein is
considered to play an important role in the blood feeding process in *T. dimidiata*. The
amino acid sequences of Td101, the other triabin-like protein found in *T. dimidiata*
saliva, shared 82% identity with dimiconin, suggesting that Td101 may have similar
activity with dimiconin. It was reported that a deficiency of FXII is not associated
with an increased spontaneous or injury-related bleeding tendency in human and mice,
and therefore FXII activation was suggested to have little effect on physiological
hemostasis (Stavrou and Schmaier, 2010). However, FXII was shown to contribute to
thrombus formation and pathologic clotting in different disease-models using
FXII-deficient mice (Renné et al., 2005; Kleinschnitz et al., 2006), indicating that FXII
plays an essential role in thrombus formation and may be a novel target for
antithrombotic therapy. Therefore, dimiconin has potential as a pharmacological
substance as well as reagent for a wide variety of research purposes.
ACKNOWLEDGEMENTS

This study was supported in part by Grants-in-aid for Scientific Research from the Ministry of Education, Science, Culture and Sports of Japan (Nos. 21780276 and 23580424).
REFERENCES

glands of the blood-sucking bug, *Triatoma dimidiata*, a vector of Chagas disease.

FIGURE LEGENDS

Fig. 1. Nucleotide and deduced amino acid sequences of Td60 encoding a triabin-like protein from *T. dimidiata* salivary glands. The deduced amino acid sequence is shown by the single-letter code under the nucleotide sequence. The putative signal peptide is underlined.

Fig. 2. (A) Sequence alignment of the salivary triabin-like protein Td60 from *T. dimidiata* together with triabin from *T. pallidipennis*. Black and grey-shaded amino acids represent identical and conserved residues, respectively. Dashes indicate gaps introduced for maximal alignment. Asterisks at the top of the amino acids denote conserved cysteine residues, and the GXW motif is indicated by ###. The putative signal peptide cleavage sites are shown by arrowheads. (B) Phylogenetic tree of triabin-like protein sequences from different triatomine bugs. Triabin-like protein sequences of *T. dimidiata* (Td60 and Td101) were aligned with those of representative triatomine triabin-like proteins obtained from a non-redundant protein database, and a phylogenetic tree was constructed. The functionally characterized proteins were underlined. The sequences from the database are represented by “(GenBank accession number) abbreviation of the species name”. Ti, *T. infestans*; Tb, *T. brasiliensis*; Tp, *T. pallidipennis*; Tm, *T. matogrossensis*; Rp, *R. prolixus*; Dm, *D. maxima*. The scale bar represents 0.1% divergence. Bootstrap values are shown above or below branches.

Fig. 3. SDS-PAGE and immunoblot analysis of recombinant dimiconin expressed in
Escherichia (E.) coli. *E. coli* was transformed with Trx-His-dimiconin (lanes 1-5)-expressing plasmid, and expression of the recombinant protein was induced by IPTG. The whole cell lysates with (lane 2) or without (lane 1) IPTG induction, soluble (lane 3) and insoluble (lane 4) fractions after sonication, and purified protein (lane 5) were subjected to SDS-PAGE analysis (A). Immunoblot analyses were performed with anti-His antibody (B) or serum from a mouse repeatedly exposed to *T. dimidiata* (C). Lane M, protein molecular weight marker.

Fig. 4. Inhibition of intrinsic coagulation by recombinant dimiconin. The inhibitory effect of dimiconin on the intrinsic coagulation pathway was examined using the activated partial thromboplastin time (APTT) assay. Citrated human plasma was incubated with Trx-His-dimiconin (●) or Trx-His-tagged protein (○), and activated with APTT reagent. Clot formation was measured using a coagulometer.

Fig. 5. Inhibitory effects of dimiconin on the enzymatic activity of FIXa, FXa and FXIIa. Citrated human plasma was incubated with various concentrations of dimiconin (■) or Trx-His-tagged protein (□), and activated with APTT reagent. The generated FIXa (A), FXa (B) and FXIIa (C) activities were measured using chromogenic substrates. The results are expressed as the mean for triplicate assays ± standard deviation.

Fig. 6. Inhibitory effect of dimiconin on FXII. FXII was treated with dimiconin (●) or Trx-His-tagged protein (○) before (A) or after (B) activation and then enzymatic activity of FXIIa was measured. The results are expressed as the mean for triplicate
Supplemental figure 1. Inhibitory effects of *T. dimidiata* salivary gland homogenate (SGH) on the enzymatic activity of FXIIa. Citrated human plasma was incubated with 0.25, 0.05, 0.01, or 0 pairs of SGH, and activated with APTT reagent. The generated FXIIa activities were measured using chromogenic substrates. The results are expressed as the mean for triplicate assays ± standard deviation.
Fig. 1
A

<table>
<thead>
<tr>
<th>Triabin</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Td60</td>
<td>VTIFGILTCAY AAEG DDCSI EKAMG DF K PEEFFNG TWY LA HGP G</td>
</tr>
<tr>
<td>Td60</td>
<td>VSPAVCOXKTS SSKF- TQIVEHIYKKEEY KFOC NQVDKNKGEQYS</td>
</tr>
<tr>
<td>Td60</td>
<td>FKCKSYECGSDNFESVDFTVIGASYDDFALVCRTITFTS TKEDDDVE</td>
</tr>
<tr>
<td>Td60</td>
<td>FKCKS----SDNEFEPADFTIFS VSYDNFALVCRSTITFTS --QKEDDY</td>
</tr>
<tr>
<td>Td60</td>
<td>VLEREKTLDFIVDNCRTYYLTEFKEMSQFLSKKENTMLSFLK</td>
</tr>
</tbody>
</table>

B

![Phylogenetic tree](image)

Fig. 2
Fig. 3
Fig. 5
Fig. 6

A

Recombinant protein (nM) vs. FXIIa activity (%)

B

Recombinant protein (nM) vs. FXIIa activity (%)