










2014; Daley and Usherwood, 2010; Gatesy and Biewener, 1991).
Below, we discuss how our current analysis of the literature data
suggests independent effects of body mass, leg length and leg
posture on bipedal gait.

Scaling of gait relative to dynamic similarity predictions
Striding birds do not move in a dynamically similar manner
across the size range from painted quail to ostrich. The empirical
scaling trends from our analysis across 21 species and a >2500-fold
range in body mass reveals that large animals consistently use
relatively higher stride frequencies and shorter stride lengths
compared with small animals at equivalent dimensionless running
speeds (Fig. 5, Table 4). Larger animals achieve higher stride

frequencies using relatively shorter stance and swing periods
(Fig. 5, Table 4). Stance period shows a stronger scaling effect than
swing period, but both contribute to the shift in stride frequency
with body size.

The observed positive allometry of stride frequency, with
exponent b=0.05 in dimensionless units (Table 4), corresponds to
a scaling exponent of−0.12 in SI units (Table 5). This is higher than
the prediction of −0.17 for dynamic and geometric similarity (see
Glossary), and −0.21 for dynamic similarity based on empirical hip
height scaling (Table 5). Stride length shows a negative allometry of
−0.05 in dimensionless units, which corresponds to a scaling
exponent of 0.28 in SI units. This is slightly lower than the predicted
exponent of 0.33 of dynamic and geometric similarity, and
considerably less than the predicted exponent of 0.41 based on
empirical scaling of hip height (Table 5). Thus, larger animals take
shorter strides for their body mass, and especially short considering
that they have longer legs for their body mass.

Gatesy and Biewener (1991) reported a scaling exponent of 0.38
for stride length, suggesting positive allometry with body mass.
However, Gatesy and Biewener’s (1991) analysis was based on the
fastest measured treadmill running speeds, and the larger animals
were moving at faster dimensionless speeds. The authors also
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Fig. 4. Scaling of hindlimb length and posture among striding birds. Large
animals have relatively longer legs owing to positive allometry of hindlimb bone
lengths and a straighter, more vertically oriented leg posture. Body mass
scaling trends are shown for hip height (H ), anatomical leg length (ΣLseg), leg
length index (ΣLseg/Liso) and leg posture index (H/ΣLseg). Anatomical leg length
is based on the sum of femur, tibiotarsus and tarsometatarsus bone lengths
(Fig. 1). Black lines indicate the prediction for geometrically similarity (no
change in shape with increased size). Empirical scaling trends are shown in
red (fit and 95% confidence interval, Table 3). Marker colors correspond to
species classification at order or infraclass level (see Table 1).
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Fig. 5. Scaling of gait measures as a function of body size among striding
birds. Large birds use relatively shorter stride lengths and higher stride
frequencies than smaller birds when moving at a dynamically similar speed
(0.75). Large birds achieve higher frequencies with shorter stance and swing
periods (see Table 4). Duty factor does not scale consistently with body size.
Birds of intermediate body mass show considerable scatter in gait, and the
outliers tend to also be outliers in leg length index (see Fig. 6). Black lines
indicate the slope expected for geometrically and dynamically similar animals
(no change in shape or dynamics with increased size; see Table 2). Empirical
scaling trends are shown in red (fit and 95% confidence interval). For marker
color code, see Fig. 4.

Table 3. Body-mass scaling exponents calculated for leg length and leg
posture variables.

Quantity b Lower Upper R2

Hip height (m) 0.41 0.36 0.47 0.90
ΣLseg 0.37 0.33 0.40 0.96
Lidx=ΣLseg/Liso 0.10 −0.01 0.22 0.12
Pidx=H/ΣLseg 0.08 0.01 0.14 0.21

ΣLseg, sum of bone segment lengths; Lidx, leg length index; Liso, isometric scaling
reference length; Pidx, posture index; H, hip height. Data are shown in Fig. 4.
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reported that large birds used relatively shorter strides and higher
frequencies than small birds when compared at similar relative
speeds (Gatesy and Biewener, 1991), consistent with our current
analysis. Previous analyses of mammalian gait have also reported a
scaling exponent of 0.38 for stride length, based on comparisons at
gait transition speeds and maximum speed, suggested to be
‘physiologically equivalent’ speeds (Heglund et al., 1974).
However, neither gait transition speed nor maximum speed results
in comparisons at equal Froude number (or dimensionless speed)
across species. Larger animals were consistently moving at faster
relative speeds in previous scaling comparisons. In laboratory
settings, it can be very challenging to measure the true maximum
speed an animal might achieve in its natural environment.
Considering the challenges and uncertainties of identifying
maximum speeds or physiologically equivalent speeds,
comparison at equal dimensionless speeds seems a more
parsimonious approach. According to our current analysis, at

dynamically similar speeds, small birds move with relatively longer
strides and lower frequencies for their body size than large birds.

Does duty factor scale with body size?
Duty factor is considered a functionally important feature of gait
because it can accurately predict peak and average vertical ground
reaction forces (Alexander, 1984, 1992). Our current analysis
suggests that DF does not show consistent body-mass scaling
among birds, but is highly variable across species (Fig. 5, Table 4).
Gatesy and Biewener (1991) found slightly higher DF for small
birds, but primarily based on the bobwhite quail showing higher
DF than the other species studied. In a study of five flightless ratite
species, Abourachid and Renous (2000) found that a single small
species, the brown kiwi, stood out from the other birds in using
high DF. Previous studies have suggested a tendency for small
birds with crouched postures to move with a relatively higher DF,
maintaining DF >0.5 over more of their speed range (Abourachid,
2001; Gatesy and Biewener, 1991; Hancock et al., 2007).
Although our current analysis suggests a potential posture effect
on DF, the trend suggests that crouched animals use lower DF
(opposite to the trend previously suggested; Table 4). This may be
an artifact of the overrepresentation of ground-feeding galliforms
within the dataset. Many galliforms have relatively more crouched
postures than other birds, and yet use shorter stance periods and
lower DF compared with those of other similarly sized species
(Figs 4 and 5).

The observation that birds generally maintain similar DF across
the >2500-fold mass range suggests that peak vertical ground
reaction forces scale with dynamic similarity. This is further
supported by recent findings that ground birds from quail to ostrich
maintain similar peak vertical forces in both steady and non-steady
locomotion (Birn-Jeffery et al., 2014). The maintenance of
consistent DF, and therefore vertical forces, across the range of
body size might reflect consistent safety factors of musculoskeletal
tissues among terrestrial vertebrates, and similar peak bone and
muscle stresses (Biewener, 1983, 1989, 2005). Nonetheless, there is
high interspecific variance in DF, especially at intermediate body
size (Fig. 5), suggesting that DF and peak vertical forces during

Table 4. Statistical models for effect of body mass, posture index and length index on gait

Variable Factor F P Estimate Lower Upper R2 d.f.

Stride frequency Constant 309.3 <0.0001 0.37 0.32 0.41 0.62 1,22
Body mass 19.9 0.0002 0.05 0.02 0.07
Posture index 3.4 0.0799 −0.18 −0.39 0.02
Length index 28.0 <0.0001 −0.63 −0.87 −0.38

Stride length Constant 174.6 <0.0001 2.06 1.84 2.31 0.64 1,22
Body mass 20.9 0.0001 −0.05 −0.07 −0.02
Posture index 3.7 0.0673 0.18 −0.01 0.38
Length index 32.1 <0.0001 0.64 0.41 0.88

Stance period Constant 29.3 <0.0001 2.25 1.64 3.08 0.45 1,19
Body mass 7.9 0.0111 −0.08 −0.14 −0.02
Posture index 9.4 0.0063 0.84 0.27 1.42
Length index 3.2 0.0880 0.52 −0.09 1.13

Swing period Constant 2.5 0.1311 1.15 0.96 1.37 0.52 1,19
Body mass 6.2 0.0220 −0.04 −0.07 −0.01
Posture index 0.0 0.9267 0.01 −0.32 0.34
Length index 21.3 0.0002 0.77 0.42 1.12

Duty factor Constant 72.7 <0.0001 0.63 0.56 0.70 0.23 1,19
Body mass 1.5 0.2332 −0.01 −0.03 0.01
Posture index 6.7 0.0180 0.26 0.05 0.47
Length index 0.7 0.4032 −0.09 −0.31 0.13

All species were compared at a relative speed of 0.75. For summary of scaling exponents in SI units, see Table 5. F-statistics and P-values are shown for the LME
statistical model, with ‘estimate’ corresponding to dimensionless scaling exponents, with lower and upper 95% confidence intervals.

Table 5. Summary of predicted and observed scaling exponents in SI
units

Prediction Observed Difference

Gait measure DS_M DS_H b (b–DS_M) (b–DS_H)

Stride
frequency

−0.17 −0.21 −0.12 0.05 0.09

Stride length 0.33 0.41 0.28 −0.05 −0.13
Stance period 0.17 0.21 0.09 −0.08 −0.12
Swing period 0.17 0.21 0.13 −0.04 −0.08

Predictions based on dimensional analysis (see Table 2)

Mechanical
work

1.33 1.41 1.28 −0.05 −0.13

Force impulse 1.17 1.21 1.09 −0.08 −0.12
Mechanical
power

1.17 1.20 1.19 0.02 −0.01

Leg stiffness 0.67 0.59 0.72 0.05 0.13

Table shows observed scaling exponents (b) in SI units, compared with dynamic
similarity predictions, assuming geometric scaling of leg length with body mass
(DS_M), and empirical scaling of hip height with body mass (DS_H).
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bipedal gaits probably do vary considerably with morphological,
behavioral and ecological factors not considered here.

Functional relationships between leg morphology and gait
Despite some apparent clustering of leg morphology and gait features
within avian clades, the addition of phylogenetic classification as a
random effect in the statistical analysis did not improve the fit of the
model (likelihood ratio tests, P=0.7–1.0). This could suggest that
other factors such as habitat specialization play a larger role in the
observed clustering of morphology and gait. We find high variance at
intermediate sizes, but larger body sizes are represented only by
ratites, and intermediate sizes are overrepresented by galliforms. In
future studies, more comprehensive and systematic sampling of gait
dynamics across the avian clade could provide further insight into the
interactions between evolutionary history and habitat specialization
on bipedal locomotion.
Despite the limitations of sparse sampling, the available data do

suggest that morphological specialization for different locomotor
ecology is associated with functional shifts in gait. Outliers in gait
are also outliers in leg length relative to body mass (Lidx), indicating
that gait varies with leg morphology (Fig. 5). Animals with long
legs for their mass use relatively longer strides, lower stride
frequencies and longer swing periods (Table 4, Fig. 6). These
findings are consistent with the increased limb inertia of relatively
long legs. For example, the pied avocet (Charadriiformes), black
and red-legged seriema (Cariamiformes) and white stork
(Ciconiiformes) all have long, straight legs for their mass, and run
with relatively low stride frequencies, long stride lengths and long
swing periods (Fig. 5) (Abourachid et al., 2005; Kilbourne et al.,

2016; van Coppenolle and Aerts, 2004). Conversely, the elegant
crested tinamou (Tinaniformes), painted quail (Galliformes) and
Eurasian oystercatcher (Charadriiformes) have short legs for their
mass, and run with relatively high stride frequencies, short strides
and short swing period (Fig. 6) (Gatesy and Biewener, 1991;
Hancock et al., 2007; Kilbourne et al., 2016). These variations in
gait with leg length index are consistent with trade-offs in cost
between stance and swing phases, with longer legs resulting in
higher limb inertia and tendency to prolong swing period to mitigate
swing costs.

Although gait does vary with leg morphology, the effect of leg
length on gait does not directly correspond to predictions of
dynamic similarity. The red-legged seriema has legs more than
twice as long for its mass compared with those of the elegant crested
tinamou (Fig. 6), but takes strides only 0.4Liso longer. Long-legged
species take long strides relative to their body mass, but short strides
relative to their anatomical leg length. One possible explanation for
this is that long-legged birds may be underpowered for their leg
length because muscle mass scales geometrically with body mass
(Maloiy et al., 1979). Although they have long legs, they may not
have sufficient extra muscle mass required to power long strides.
Whatever the explanation for the specific gait patterns, the outliers
highlight that gait dynamics are strongly influenced by variation in
limb morphology, which appears to be associated with adaptation
for different locomotor ecology.

It is also worth noting that the effects of leg length and leg posture
on gait oppose the general scaling trends with body mass (Table 4).
For example, relative stride frequency increases with body mass, but
decreases with leg length index. These findings suggest that the
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deviations from dynamic similarity with body mass are not directly
related to allometric scaling of leg length. The increase in leg length
with body size tends to ameliorate the effects of body mass scaling,
allowing animals of different size to more closely approximate
dynamic similarity. It is also interesting to note that there are no
scaling outliers among species larger than 10 kg, possibly suggesting
that larger animals might be more heavily constrained by the
functional demands to support body weight with increasing size.

Functional interpretation of observed scaling trends
Based on our scaling analysis, we suggest that the striding gaits of
birds are influenced by functional trade-offs in the mechanical
demands for force, work and power relative to muscle capacity
versus activation costs related to leg cycling frequency.
Understanding these trade-offs requires consideration of the
mechanical demands relative to available muscle capacity and the
scaling of metabolic energy costs with body size. It is well
established that mass-specific metabolic cost of transport ( joules
required per kilogram body mass to travel a given distance)
decreases with increasing body mass, scaling asM−0.32 (e.g. Fedak
et al., 1974; Taylor et al., 1982). Yet, the energetic cost to generate
ground reaction force in J N–1 is relatively constant with increasing
body mass (Kram and Taylor, 1990; Roberts et al., 1998). Large
animals operate their muscles at absolutely lower frequencies and
travel an absolutely greater distance per stride, therefore requiring
fewer muscle activation–contraction cycles to travel a given
distance. Thus, the main reason large animals have lower
energetic cost of transport is that they use absolutely lower stride
frequencies, and therefore lower muscle activation frequencies
(Kram and Taylor, 1990; Taylor et al., 1982; Roberts et al., 1998;
Pontzer, 2016).
Although large animals have lower energetic cost of transport,

they face relatively higher mechanical demands for muscle force,
work and power relative to their available muscle capacity. Large
birds face challenges in supporting their body mass against gravity,
because vertical ground reaction force demands scale as M1

(Table 2), but force capacity (proportional to muscle fiber cross-
sectional area) scales with only slight positive allometry as
M0.73–0.78 (Bennett, 1996; Maloiy et al., 1979), suggesting that
muscle stress (force/area) should increase as M0.22–0.27. However,
the scaling of force demands can be partially overcome through
shifts in limb effective mechanical advantage with increasing body
size, so that muscle stress actually scales nearly independently
of size, as M0.06 (Biewener, 1989). Nonetheless, shifts in limb
mechanical advantage cannot alter work and power demands.
Dynamic similarity predicts that mechanical work demand will
increase with body mass as M4/3 and power demand as M7/6

(Table 2). Maximum mass-specific work and power output of
muscle is relatively constant across vertebrates (Askew et al., 2001;
Nelson et al., 2004; Zajac, 1989). Consequently, total capacity to
produce work and power relate to muscle mass, which scales
geometrically with body mass (M1) (Maloiy et al., 1979). Dividing
demands for work and power by the available muscle capacity,
mass-specific work demand is predicted to scale asM1/3, and mass-
specific power demand asM1/6. Based on this, a 100 kg bird would
have 10-fold higher mass-specific work demand and threefold
higher mass-specific power demand than a 0.1 kg bird, when
moving at a dynamically similar speed. These considerations
suggest that large birds must activate a larger fraction of their
available muscle capacity to meet the demands for force, work and
power during stance, operating nearer to muscle actuator limits
compared with small animals.

The relatively shorter stride lengths of large birds may help
mitigate the risks and costs of operating near muscle actuator
limits by maintaining more vertical leg loading, which minimizes
fore–aft forces and muscle work (Fig. 7). A SLIP model of gait
dynamics predicts that gaits with relatively shorter strides demand
lower fore–aft forces, total force impulse and stance phase work
(Fig. 7). However, shorter strides also necessitate correspondingly
higher stride frequencies, which are likely to increase swing-
phase muscle activation costs. Based on this, we suggest that the
gaits of large birds are consistent with pressure to mitigate scaling
of force, work and power demands relative to available muscle
capacity, but at a cost of requiring relatively higher leg cycling
frequencies (Fig. 7). Many large cursorial animals have especially
well-developed elasticity in the distal limb, which can help
facilitate rapid leg swing through an elastic recoil ‘catapult’
mechanism (McGuigan and Wilson, 2003; Schaller et al., 2009;
Smith et al., 2006; Wilson et al., 2003). However, it remains
unknown whether these mechanisms reduce the muscle activation
costs associated with the swing phase. It is also worth noting that
limb moment of inertia increases asM2.1 among birds (Kilbourne,
2013), suggesting that large birds should incur higher muscle
torque demands for leg swing, and therefore higher muscle
activation costs in swing. Nonetheless, larger birds opt for gaits
with relatively shorter strides and higher leg cycling frequency
than the gaits of small birds, suggesting that, on balance,
large animals face greater priority to mitigate stance-phase
mechanical demands, despite the likely associated increase in
swing-related costs.

In contrast, the gaits of small birds likely reflect higher priority to
mitigate frequency-related costs in both the stance and swing phases
of locomotion because they must operate their muscles at absolutely
higher contraction frequencies. A 0.1 kg bird must cycle its legs
threefold faster than a 100 kg bird at a dynamically similar speed.
High-frequency contractions incur relatively higher ATP activation
costs (Rome and Lindstedt, 1997, 1998). Adaptation for
exceptionally fast contraction is possible; for example,
hummingbird flight muscles operate at ∼40 Hz (Rome and
Lindstedt, 1998). However, protein isoforms that allow especially
fast contractions require high operating temperatures, and are
associated with high aerobic metabolic rates (Rome and Lindstedt,
1997, 1998). Consequently, although frequency of muscle
contraction is unlikely to be a hard constraint on gait dynamics, it
is an important factor in the metabolic energy cost of gait (Kram and
Taylor, 1990; Roberts et al., 1998). The relatively longer strides of
small birds likely incur relatively higher stance-phase mechanical
work demands (Fig. 7), but allow longer stance and swing periods,
implying relatively lower muscle contraction frequencies for both
stance and swing phases (Fig. 5, Table 4). These considerations
suggest greater priority for small birds to minimize the absolute
frequency of muscle contractions.

Stability and agility are also likely to be important factors in
scaling of avian bipedal gait relative to body mass. Small birds are
likely to move through relatively ‘rougher’ terrain environments,
frequently encountering bumps, holes and obstacles that are large
relative to their leg length. Consequently, the gaits of small birds
might reflect a necessity to maintain robust stability and agility in
relatively rough terrain, even at the cost of incurring relatively
higher mechanical work demands. Small birds use gaits with longer
stance period and leg angular sweep during stance, which increases
the intrinsic mechanical stability and robustness to variation in
terrain height (Daley and Usherwood, 2010) (Fig. 7). Small animals
also have relatively faster neural response time compared with that
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of large animals, owing to absolutely shorter nerve transmission
distances (More et al., 2010). Sensorimotor loop delays increase in
proportion to nerve transmission distance, and therefore leg length,
which scales asM0.41; yet, stance period scales asM0.09 (Table 5).
These findings suggest that smaller animals have faster
sensorimotor response times in both absolute and relative terms,
with delay as a fraction of stance predicted to scale withM0.32. This
is qualitatively similar to the scaling trend found by More and
colleagues (2010) for mammals, but we find that birds show a
more pronounced increase in delay relative to stance with
increasing body mass, owing to the positive allometry of leg

length and negative allometry of stance period (Table 5). We
suggest that the gaits of smaller birds, with relatively longer stance
periods, might reflect functional demands to make frequent within-
stance adjustments to achieve stability and maneuverability in
relatively rough terrain. Thus, scaling of stance period could reflect
differences in the scaling of terrains typically encountered by small
versus large birds, and therefore differences in the relative fraction of
locomotion spent in relatively steady versus non-steady movement.
However, a direct link between natural terrain roughness and
preferred gait dynamics among striding birds has not yet been
conclusively shown.
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Future directions
Current scaling analyses do not account for the vast diversity of
avian ecology, life history and locomotor behaviors. In this Review,
we have focused on the well-studied striding bipedal gaits of
walking and running, but birds use their legs for a diverse range of
behaviors, including hopping and skipping, jumping for flight take-
off, arboreal locomotion, swimming, water running and scratch
preening (Abourachid and Höfling, 2012; Biewener and Corning,
2001; Heers and Dial, 2015; Portugal et al., 2016; Provini et al.,
2012a,b, 2014). Although most birds use striding gaits during some
part of their life history, other behaviors are undoubtedly
ecologically important. Many arboreal passerine species must
move through complex three-dimensional environments with
highly varied surface compliance and stability (Abourachid and
Höfling, 2012). For these animals, perching balance in the face of
perturbations is likely to be especially important. The leg and foot
morphology of ducks likely reflects adaptations that enable them to
effectively paddle through water and move on land (Biewener and
Corning, 2001). Long-legged wading birds spend a large fraction of
their time balancing on one leg in water, and the demands of
standing balance have likely shaped morphological adaptations of
the leg (Chang and Ting, 2017). Yet, we still have relatively little
insight into how different locomotor behaviors and musculoskeletal
demands have shaped the evolution of locomotor morphology
among diverse avian species.
Foot morphology and function is one particularly under-explored

aspect of avian gait dynamics. Bird foot morphology is diverse, and
control of foot–substrate interactions is likely to be crucial in
effective movement and balance (Abourachid et al., 2017; Backus
et al., 2015). Yet, the relationship between foot form and function
remains poorly understood. Foot shapes range from the relatively
basal and common anisodactyl foot (with digit 1 backward, digits
2–4 forward) to the next most frequent arrangements of heterodactyl
and zygodactyl feet, which both have two toes facing forwards and
two toes backwards (Bock and Miller, 1959), and the more derived
pamprodactyl foot (Collins, 1983), with two inner toes forward and
two outer toes that can rotate forward and backwards (Abourachid
et al., 2017; Botelho et al., 2014; Livesey and Zusi, 2006). Foot
morphology appears to be a relatively plastic developmental
structure across the avian lineage, which may have facilitated the
observed diversity in foot anatomy (Botelho et al., 2015a,b).
Although it is clear that birds exhibit a wide diversity of foot form
and function, it remains unclear how the specific foot morphologies
influence foot–substrate interactions to shape gait dynamics. The
foot plays a crucial role in control of gait, because small shifts in foot
contact dynamics have the potential to rapidly change the direction
and magnitude of ground forces, and may determine the difference
between a slip and fall or a successful foot contact. It will be very
interesting for future work to investigate the diversity of foot
morphology and biomechanics among birds adapted to different
substrate conditions.
The field of comparative biomechanics is increasingly

multidisciplinary, gaining insight from many fields and
approaches including theoretical mechanics, musculoskeletal
modeling, optimization theory, robotics, experimental physiology,
functional anatomy and movement ecology, among others. A single
review cannot hope to integrate all of the perspectives that have
contributed to current knowledge. Yet, we hopewe have highlighted
the continuing utility of dynamic similarity and scaling principles
for interpreting shifts in functional demands among animals of
different size and morphology. Advances in technology have
enabled measurement of locomotor dynamics over an increasingly

broad range of conditions, including free-ranging and wild animals
during foraging, predator–prey interactions and migration (Dewhirst
et al., 2017; Hubel et al., 2016). Studies of non-steady locomotor
dynamics can help reveal how animals balance multiple functional
demands, including energetic costs, stability, injury avoidance,
speed and maneuverability (e.g. Tan andWilson, 2011; Birn-Jeffery
et al., 2014). The potential for functional demands to limit
performance and lead to direct trade-offs is most acute during
maneuvering at high speeds, such as predator–prey interactions
(Wilson et al., 2018). Consequently, it will become increasingly
important to consider locomotor dynamics during ecologically
relevant ranges of behavior. Recent work has also highlighted the
need to fully consider three-dimensional motions during
maneuvering behaviors (Kambic et al., 2014), which have often
been neglected in studies of bird gait. As we continue to explore an
increasingly rich range of animal locomotor behaviors, we suggest
that the findings will be most informative when interpreted based on
fundamental physical principles and mechanical demands that
underlie gait.
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