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Fig. 3. Atmosphere exchange during the
experimental procedure without handling the

1 Ambient

subject. After inducing the alligator to bellow in the

air

sealed chamber in ambient air (A), the water level
was raised and the ambient air was removed (B).
While lowering the water level again, the vacuum
was filled with heliox (C) and the animal was
subsequently stimulated to bellow in the heliox
atmosphere (D).

Heliox

common ancestor with all extinct dinosaurs. It has been suggested
that resonance frequencies played a biological role in dinosaur
vocalizations (Weishampel, 1981), and the present findings
demonstrating formants in crocodilians, combined with previous
evidence for avian formants cited above, provide new empirical
support for this intriguing hypothesis.

MATERIALS AND METHODS

Subject

Data were collected at the St Augustine Alligator Farm Zoological Park, FL,
USA, in June 2013. An adult Chinese alligator (4. sinensis) female (head
length 16 cm, snout-vent length 64.5 cm, total length 125 cm) had
undergone and recovered from medical treatment and was quarantined in
a rectangular plastic tub (LxWxH=120x110%81 cm) for observation. It
bellowed frequently, usually in response to the bellowing chorus of 40
American alligators (4. mississippiensis) in a nearby enclosure.

Call recordings and bellowing stimulation

The alligator’s vocalizations were recorded with a Sennheiser directional
microphone (ME 66) connected to a digital sound recorder (Zoom H4n
Handy Mobile 4-Track Recorder, at 44.1 kHz sampling frequency and
16-bit amplitude resolution). The microphone was mounted on a tripod and
its tip was placed at a constant distance of 100 cm from the closest corner. A
battery-powered loudspeaker (Ion Audio IPA16 Block Rocker AM/FM
Portable PA System, frequency response: 70-20,000 Hz) was placed onto
an oblong wooden crate, one edge of which rested on the rack supporting the
quarantine tub. The loudspeaker was placed 50 cm away from the tub. The
alligator could be reliably induced to bellow by playing back a sound file
with the subject’s own calls arranged into bouts of three calls. When playing
sounds, the loudspeaker transmitted vibrations both via air and into the
water, and thus to the animal inside the tub.

Construction and training prior to the experiment

The sidewalls of the quarantine tub were made airproof by filling holes
and gaps with Premium waterproof silicone. Using polyvinyl chloride
(PVC) pipes and plastic seal washers, a gas inlet and a sealable vent were
built into two opposing walls. Two gas cylinders filled with pure oxygen
and helium, respectively, were connected via plastic tubes to the gas inlet.
To accurately monitor the water level and pressure changes inside the
opaque tub, a column manometer was installed on the outside of the front

?

wall. The tub had a removable lid with a central window covered with wire
mesh that allowed visual access to the subject. The area of the lid that was in
contact with the rim of the tub was coated with a 1 cm-high bead of silicon.
In order to make the entire system airtight, a plastic drop cloth was laid over
the top opening of the tub, the lid was lowered onto it, and four flagstones
were placed on each corner, which compressed the silicon bead and sealed
the tub. For several days prior to the experiment, the water level inside the
tub was repeatedly raised and lowered for two purposes: to train the alligator
for the upcoming experimental procedure and to determine the maximum
water level at which it could still comfortably bellow. During disturbances,
floating crocodilians typically submerge defensively, and our alligator
submerged immediately when any water flow occurred.

Experimental procedure

The entire experiment was performed without handling the animal (Fig. 3).
The lid was put on the tub and the setup sealed. Then the air vent was
opened, the water level was raised to maximum bellowing height (63 cm of
water, 18 cm of air), and the vent was sealed again. The alligator was
induced to bellow in air for 5 min (Fig. 3A). Next, the air vent was opened
again and the tub filled with water to the very top (Fig. 3B). After sealing the
air vent, the water level was slowly lowered and the resulting vacuum was
filled with the helium—oxygen mixture until the maximum bellowing height
was reached (Fig. 3C). The helium was piped in first, followed by the
oxygen. By monitoring the column manometer, a heliox mixture of 88%
helium and 12% oxygen was created. After a 5 min break to allow full
replacement of the alligator’s respiratory gases by heliox, the alligator was
again stimulated to vocalize (Fig. 3D) using playbacks (44—46 min).
Afterwards, the water level was again raised to the top to eject the heliox.
After opening the air vent, the water was lowered to the maximum bellowing
height, so that ordinary atmospheric air once again filled the space above the
water surface. The tub was again made airtight and the alligator was
stimulated with the playback for a third time (22—24 min). This entire
procedure was repeated again 3 days later, yielding a total of four
atmospheric and two heliox bellowing bouts.

Acoustic analyses

Individual bellows were extracted from the recordings using Adobe
Audition (version 4.0), and recorded calls were discarded if they
overlapped with the stimulation playback calls. All acoustic analyses were
conducted using the Praat analysis program (version 5.2.45, www.praat.
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org). Our analysis focused on the following three steps: (1) source signal,
intensity and duration, measured automatically; and formant frequencies
measured (2) automatically and (3) manually, as detailed below.

Source signal, intensity and duration, measured automatically

The pulse frequency was calculated from the mean pulse period, which
was automatically measured by the software. By adjusting the pitch
settings [To PointProcess (periodic, cc); Minimum pitch: 20 Hz;
Maximum pitch: 70 Hz] a visual match was created between the pulse
indicators (Show pulses) in the waveform and the visible pulses in the
time domain of the spectrogram. Subsequently, the mean pulse period
was obtained from the PointProcess object [Get mean period; Time
range: 0.0-0.0 (=all) sec; Shortest period: 0.018s; Longest period:
0.04 s; Maximum period factor: 1.3]. The dominant frequency, the
frequency with the highest amplitude in the spectrum, was also
automatically extracted from each recording (To Ltas; Bandwidth:
10 Hz). Additionally, relative intensity and call duration were analysed to
clarify whether the two gas treatments had other differential acoustic
effects on the alligator’s calling behaviour.

Formant frequencies, measured automatically

Two higher-frequency peaks in the spectrum were clear in most calls,
which we hypothesized to be formants; we used two analysis techniques
to measure their frequencies. The putative formants were first
automatically measured in all recordings in Praat [To Formant (burg)
function]. The analysis settings were adjusted to the physical predictions
for the two atmospheres. The temperature at the beginning of the
experiments was measured at around 23°C and assumed to be the
subject’s body temperature, as the experiments were conducted in the
morning hours and the tub had had no time to heat up substantially.
Hence ¢ (speed of sound) was expected to be 345 ms™' in normal air.
Given the same temperature and a gas mixture of precisely 88% helium
and 12% oxygen, the sound velocity was expected at 712ms™' in
heliox, about twice the velocity in ambient air. The head length of the
Chinese alligator was 16 cm, and this measurement was used as a rough
approximation of vocal tract length (nasal plus pharyngeal cavity). We
approximated the supralaryngal vocal tract as a tube, open at the nostrils
and closed at the glottis (Reby and McComb, 2003). With this set of
assumptions and following the principles of voice production (Titze,
1994), we calculated the theoretical positions of the first two formants in
the spectrum of our recordings from both atmospheres using Eqn 1
(where ¢ is the speed of sound and VLT is vocal tract length; Reby and
McComb, 2003):

(2i—1)c

Fi="m M
This gives predictions for F1 (first formant) at around 539 Hz and F2 at
~1618 Hz in ambient air. In heliox, we expected to find F1 at ~1112 Hz and
F2 at ~3337 Hz. Consequently, the settings for the automated analyses in
Praat were adjusted for the two atmospheres [To Formant (burg); Maximum
number of formants: 2; Window length: 0.05s; Maximum formant:
2000 Hz (air), 4000 Hz (heliox); Pre-emphasis from: 400 Hz (air), 800 Hz
(heliox)].

Formant frequencies, measured manually
We selected 16 call recordings with a high signal-to-noise ratio from each
treatment for a more detailed manual analysis of the first two formants. Basic
Praat settings were again adjusted to fit the expected sound velocity per
atmosphere [Maximum number of formants: 2; Maximum formant
frequency: 2000 Hz (air), 4000 Hz (heliox)]. For each recording,
additional program settings (Window length, Pre-emphasis) were adjusted
to fit the specific call. The formants were measured at a point in time (Query:
Formant listing) where a visual match was created between the formant
frequencies as indicated in Praat’s editing window and the frequency bands
of high energy visible in the spectrogram.

For all formant analyses, we performed the analyses above with and
without downsampling (Resample; New sampling frequency: 10,000 Hz;
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Precision: 50 samples) and the results were the same; the precise values
presented here are without any downsampling.

Statistical analyses

Statistical comparisons between the calls from the two atmospheres were
conducted using the exact Wilcoxon rank-sum test for unpaired data in R
(version 3.0.2). All tests were two-tailed with 0=0.05.

Ethical note

Heliox is commonly used in human clinical treatment, because it is easier to
inhale than atmospheric air, and in diving. As a noble gas, helium is
chemically inert and hence completely non-toxic. The current study was
approved by the St Augustine Alligator Farm research committee in
April 2013.
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