Hyperactivation of L-type voltage-gated Ca2+ channels in
\textit{Caenorhabditis elegans} striated muscle can result from point mutations in the IS6 or the IIIS4 segment of the \(\alpha_1\) subunit

Viviane Lainé, Jean Rony Ségor, Hong Zhan, Jean-Louis Bessereau and Maelle Jospin*

ABSTRACT

Several human diseases, including hypokalemic periodic paralysis and Timothy syndrome, are caused by mutations in voltage-gated calcium channels. The effects of these mutations are not always well understood, partially because of difficulties in expressing these channels in heterologous systems. The use of \textit{Caenorhabditis elegans} could be an alternative approach to determine the effects of mutations on voltage-gated calcium channel function because all the main types of voltage-gated calcium channels are found in \textit{C. elegans}, a large panel of mutations already exists and efficient genetic tools are available to engineer customized mutations in any gene. In this study, we characterize the effects of two gain-of-function mutations in \textit{egl-19}, which encodes the L-type calcium channel \(\alpha_1\) subunit. One of these mutations, \textit{ad695}, leads to the replacement of a hydrophobic residue in the IIIS4 segment. The other mutation, \textit{n2368}, changes a conserved glycine of IS6 segment; this mutation has been identified in patients with Timothy syndrome. We show that both \textit{egl-19} (gain-of-function) mutants have defects in locomotion and morphology that are linked to higher muscle tone. Using \textit{in situ} electrophysiological approaches in striated muscle cells, we provide evidence that this high muscle tone is due to a shift of the voltage dependency towards negative potentials, associated with a decrease of the inactivation rate of the L-type Ca2+ current. Moreover, we show that the maximal conductance of the Ca2+ current is decreased in the strongest mutant \textit{egl-19(n2368)}, and that this decrease is correlated with a mislocalization of the channel.

KEY WORDS: \textit{Caenorhabditis elegans}, Ca2+ channel, L-type, Mutation, Muscle

INTRODUCTION

Calcium ions play multiple roles in cell physiology, starting from the initiation of a one-cell growth during fertilization to its termination by apoptosis. Among the molecules involved in fine-tuning of Ca2+ homeostasis, voltage-gated Ca2+ channels are responsible for local and transient increases of intracellular Ca2+ concentration. Based on pharmacological and biophysical properties, voltage-gated Ca2+ channels are classified into three families: the L-type, the P/Q/R/N-type and the T-type channels (Catterall, 2011). L-type channels have been shown to play crucial roles in Ca2+ homeostasis of excitable cells. Dysfunction of these channels has been reported in several congenital disorders, including hypokalemic periodic paralysis (hypoPP), malignant hyperthermia or Timothy syndrome (Jurkat-Rott et al., 1994; Ptácek et al., 1994; Monnier et al., 1997; Splawski et al., 2004). The molecular bases of these channelopathies have been well described: mutations are located at multiple sites of the pore-forming and voltage-sensor regions of the \(\alpha_1\) subunit. The \(\alpha_1\) subunit is composed of four equivalent domains (named I to IV) containing six transmembrane segments (named S1 to S6) and linked to each other by large cytoplasmic loops (Catterall, 2011).

In hypoPP and malignant hyperthermia, most mutations target the arginine residues in the S4 voltage-sensor segments of the skeletal subunit CACNA1S (Jurkat-Rott et al., 1994; Ptácek et al., 1994; Monnier et al., 1997; Wang et al., 2005; Chabrier et al., 2008; Carpenter et al., 2009; Ke et al., 2009; Pirone et al., 2010; Toppin et al., 2010; Hirano et al., 2011; Li et al., 2012). In Timothy syndrome, two glycine residues in IS6 segment have been reported to be mutated in the cardiac and neuronal subunit CACNA1C (Splawski et al., 2004; Splawski et al., 2005). Understanding the functional effects of these L-type channel mutations is a prerequisite to develop new therapeutic strategies. However, the physiological consequences of the mutations are still poorly understood. Expressing these channels in heterologous expression systems remains challenging. Moreover, these channels interact with multiple cellular partners \textit{in vivo}. Thus \textit{in vivo} studies of mutant forms of L-type calcium channels are necessary. Until now, very few of these studies have been published. Cheng et al. have described that the inactivation kinetics of the current is strongly slowed in mice carrying the Timothy syndrome mutation G406R (Cheng et al., 2011). Wu et al. have shown that skeletal muscle fibers of mice carrying the hypoPP mutation R528H exhibit an anomalous leak current through the mutated S4 segments (Wu et al., 2012). Generation of such mutant mice is still very time consuming, so developing other \textit{in vivo} approaches could be a fruitful way to understand the effects of the multiple voltage-gated Ca2+ channel \(\alpha_1\) subunit mutations.

The nematode \textit{Caenorhabditis elegans} Maupas could be an invaluable source for \(\alpha_1\) subunit mutants. Indeed, over 150 mutations have already been reported in \textit{egl-19}, the sole gene encoding an L-type \(\alpha_1\) voltage-gated Ca2+ channel subunit in \textit{C. elegans} (www.wormbase.org) (Lee et al., 1997). Based on their genetic and phenotypic features, \textit{egl-19} mutants have been classified into three groups: the complete loss-of-function mutants that are lethal, the partial loss-of-function mutants that exhibit a slender morphology, and the gain-of-function mutants that are characterized by a bulky body (Lee et al., 1997). To date, the effects on currents have only been described for two partial loss-of-function mutations, \textit{n582} and \textit{ad1006}. The \textit{n582} mutation changes an arginine residue to a histidine in segment IIIS4 of EGL-19. In the non-striated pharyngeal muscle cells and in the striated body wall muscle cells of \textit{n582} mutants, voltage-dependent currents activate more slowly.
than those of wild-types and their voltage dependency is shifted towards positive potentials (Jospin et al., 2002; Shtonda and Avery, 2005; Gao and Zhen, 2011). In body wall muscle cells of ad1006 mutants, voltage dependency is also shifted towards positive potentials and the current amplitude is decreased (Gao and Zhen, 2011). The functional effects of two gain-of-function mutations, n2368 and ad695, have also been partially investigated: action potentials have been monitored in pharyngeal and body wall muscle cells (Lee et al., 1997; Gao and Zhen, 2011; Liu et al., 2011), and Ca2+ transients have been measured in the pharynx (Kerr et al., 2000). However, these studies have led to conflicting results: Gao and Zhen have shown that action potentials of ad695 mutants are similar to those of wild-type (Gao and Zhen, 2011), whereas Liu et al. reported action potentials with longer duration and amplitude similar to those of wild-type (Gao and Zhen, 2011), whereas Liu et al. reported action potentials with longer duration and amplitude (Liu et al., 2011).

Here we describe the functional effects of egl-19(n2368) and egl-19(ad695) gain-of-function (gf) mutations in striated body wall muscle cells of C. elegans. By phenotypic and pharmacological analysis, we show that the bulky phenotype of these gain-of-function mutants is correlated with decreased locomotion, partially caused by the hypercontraction of striated body muscles. With in situ patch-clamp recordings we provide evidence that the hypercontraction of the muscles is due to the hyperactivation of L-type channels: the voltage dependency is shifted towards more negative potentials and the inactivation is altered. We also demonstrate that the amplitude of the voltage-dependent Ca2+ current is decreased in n2368 mutants, partially due to the membrane mislocalization of the mutant channel.

RESULTS

egl-19(gf) mutants exhibit morphological and locomotion defects

As previously described (Lee et al., 1997), we found that egl-19(ad695) and egl-19(n2368) mutants were shorter than, but as wide as, wild-type animals (Fig. 1A). We quantified this size change by measuring the length and width of young adults. egl-19(ad695) and egl-19(n2368) animals were, respectively, 20 and 30% shorter than wild-type, but barely thinner (Fig. 1B). We used the width/length ratio as an indicator of body morphology (Spooner et al., 2012): a low ratio corresponds to a slender body, whereas a high ratio indicates a thickset morphology. The width/length ratios of both egl-19(gf) alleles are significantly higher, with egl-19(n2368) being greater than egl-19(ad695). Both strains have a stocky body shape.

We then tested whether the stocky morphology of egl-19(gf) was correlated with locomotion defects. Worm locomotion was observed in liquid where animals thrash vigorously, flexing and bending their bodies. Quantification of body bends showed that this form of locomotion was reduced in both egl-19(gf) mutants (Fig. 1C), but more strikingly for the n2368 strain (90% decreased). In addition, we observed that swimming of egl-19(gf) mutants was altered: these worms were not bending on either side like wild-type, but rather tended to curl up. We thus showed that besides morphological defects, egl-19(gf) worms showed quantitative and qualitative locomotion defects.

egl-19(gf) phenotype results from a high muscle tone

In their initial study, Lee et al. (Lee et al., 1997) suggested that the morphological defect of egl-19(gf) worms was due to a high...
muscle tone. However, because egl-19 has been shown to be involved in worm development (Tam et al., 2000; Moghal et al., 2003; Bauer Huang et al., 2007), a developmental failure could also explain the shorter size of the gain-of-function mutants. To test whether egl-19(gf) mutants are indeed hypercontracted, we carried out a set of pharmacological tests, adapted from Petzold et al. (Petzold et al., 2011). We took advantage of the double innervation of C. elegans muscles, coming from GABA and acetylcholine motor neurons, to pharmacologically induce either hypercontraction or relaxation of wild-type and egl-19(gf) animals. Worms were exposed to 0.1 mmol l⁻¹ levamisole, a cholinergic agonist increasing muscle tone, for 30 min. As expected for a hypercontracting drug, the levamisole induced an increase of the width/length ratio for the three strains (Fig. 2A). To compare the drug responsiveness of each strain, the width/length ratio of each worm prior to treatment was subtracted from the ratio of the same worm after the 30 min treatment, and this variation was then normalized to the ratio prior to treatment, to give the levamisole-induced contraction percentage. If egl-19(gf) strains are already hypercontracted, they should contract less in response to levamisole. We observed that levamisole indeed affected the body morphology of wild-type animals more than that of egl-19(gf) mutants: after the levamisole treatment the width/length ratio varied by 24% in wild-types, whereas variations of 14 and 17% were observed in egl-19(ad695) and egl-19(n2368) mutants, respectively (Fig. 2B). Conversely, the aptitude of body wall muscles to relax was measured upon a 30 min treatment with 10 mmol l⁻¹ muscimol, a GABAergic agonist inducing muscle relaxation. As expected, a decrease of the width/length ratio after muscimol treatment was observed in the three strains (Fig. 2C). The width/length ratio of each worm after the 30 min treatment was subtracted from the ratio prior to treatment of the same worm, and this variation was then normalized to the ratio prior to treatment, to give the muscimol-induced relaxation percentage. If egl-19(gf) worms are hypercontracted, they should relax more than wild-type animals in the presence of muscimol. Muscimol was found to have a stronger effect on egl-19(gf) worms compared with wild-type: after the muscimol treatment, the width/length ratio varied by 5% in wild-type, whereas variations of 7 and 11% were observed in egl-19(ad695) and egl-19(n2368) mutants, respectively (Fig. 2D). The decrease of levamisole-induced contraction and the increase of muscimol-induced relaxation in both egl-19(gf) mutants are in agreement with a hypercontracted basal state.

Voltage-gated Ca²⁺ channels are hyperactive in egl-19(gf) striated muscles

Using the whole-cell configuration of the patch-clamp technique in the presence of K⁺ channel blockers, we investigated the properties of Ca²⁺ currents from body wall muscles of dissected wild-type, egl-19(ad695) and egl-19(n2368) worms. Muscle cells were depolarized by 200 ms steps from a holding potential of −60 mV. As previously described (Jospin et al., 2002), voltage-dependent Ca²⁺ currents recorded from wild-type animals displayed a biphasic appearance, with an early transient peak followed by a slowly inactivating component (Fig. 3A). This decay was altered in egl-19(n2368) and egl-19(ad695) worms: the early transient peak was difficult to distinguish in these animals (Fig. 3A,B). To confirm that inactivation was modified in egl-19(gf) worms, we analysed the inactivation kinetics. For each cell, we measured the R₅₀₀ parameter, defined as the current fraction still present at the end of the pulse. We found that this fraction was significantly increased by 25 and 66% in egl-19(ad695) and egl-19(n2368) mutants, respectively, compared with that of wild-type (Fig. 3C). We also determined the activation time constant τ and showed that it is increased about 2-fold in egl-19(n2368) worms (Fig. 3C).
We then established the current–voltage relationships at the maximal amplitude of the current (Fig. 3D). For each cell, individual current–voltage relationship was fitted with Eqn 1 (see Materials and methods) in order to obtain the Ca\(^{2+}\) current parameters \(G_{\text{max}}\), \(V_{\text{rev}}\), \(V_{0.5}\) and \(k\) (Fig. 3E). The reversal potential \(V_{\text{rev}}\) was shifted toward negative potentials in egl-19(ad695) (50.2±1.4 mV) and egl-19(n2368) (40.0±3.0 mV) mutants, compared with that of wild-type (57.1±1.1 mV). This result suggests that voltage-gated Ca\(^{2+}\) channels might be less selective in egl-19(gf) animals than in wild-types. Moreover, the voltage dependency of the Ca\(^{2+}\) currents in egl-19(gf) mutants was altered: the half-activation potential \(V_{0.5}\) was decreased by 6 and 16 mV, respectively, for ad695 and n2368 mutants compared with wild-type, and the steepness factor \(k\) was increased by 20% in n2368 mutants. These results show that the voltage-gated Ca\(^{2+}\) channels are hyperactivated.
Ca2+ channels in both egl-19(gf) strains are hyperactive: they open at more negative potentials because of the voltage dependency shift, and their mean open time is longer because of the partial or complete lack of the inactivation properties. Interestingly, the maximal conductance G_{max} was significantly reduced in egl-19(n2368) mutants, by 60% compared with the wild-type. This result could be explained by lower levels of Ca2+ channels at the plasma membrane, and/or by intrinsic properties of the channel, such as modification of the pore.

Voltage-gated Ca2+ channels are mislocalized in egl-19(n2368) mutants

To understand the origin of G_{max} decrease, we examined the membrane localization of voltage-gated Ca2+ channels in body wall muscles of wild-type, egl-19(ad695) and egl-19(n2368) worms. Because of the lack of specific antibodies, we decided to use a single-copy transgenic strain expressing a functional green fluorescent protein (GFP)-tagged voltage-gated Ca2+ channel to evaluate the Ca2+ channel localization. We generated an N-terminally GFP-tagged UNC-36 fusion protein because unc-36 encodes the sole α_2-δ auxiliary subunit of the L-type voltage-gated Ca2+ channel expressed in body wall muscles (Fig. 4A) (Lainé et al., 2011) and a recent study has also shown that the interaction between α_1 and α_2-δ subunits is strong and that they are intimately associated at the plasma membrane (Cassidy et al., 2014). The expression of GFP:UNC-36 in unc-36 mutants rescued the locomotion phenotype and the Ca2+ current defects observed in unc-36 mutants (Lainé et al., 2011; Zhan et al., 2014), so we assumed that the localization of the fusion protein matched that of endogenous channels. As previously described (Frokjaer-Jensen et al., 2006), unc-36 staining was observed in most neuronal and muscle cells (Fig. 4B–E). The membrane fluorescence of striated muscle cells was imaged on the basal plasma membrane just above the hypodermis and showed a punctate pattern in wild-type animals (Fig. 5A). While this distribution was not affected in worms carrying the ad695 mutation, egl-19(n2368) worms showed irregular dots of fewer intensity surrounded by a diffuse staining (Fig. 5A,B). In addition, the mean fluorescence was reduced by 25% in egl-19(n2368) animals compared with wild-type, whereas it was not affected in egl-19(ad695) mutants (Fig. 5C). Finally, we imaged muscles at mid-height section and observed that the fluorescence matched the diamond-shaped outline of the cells, as expected considering the plasma membrane localization of voltage-gated Ca2+ channels. However, we noticed an accumulation of fluorescence at the tip of the cells in egl-19(n2368) animals, suggesting a submembrane accumulation of these channels (Fig. 5D). These results support the

Fig. 4. The α_2-δ UNC-36 subunit is expressed in striated muscle cells among other neuronal and muscle tissues.

(A) Molecular composition of the voltage-gated Ca2+ channels present at the plasma membrane of C. elegans body muscles. The main subunit α_1, EGL-19 is the voltage sensor and the pore-forming subunit, and is associated with two auxiliary subunits α_2-δ and β, encoded respectively by unc-36 and ccb-1. To investigate the localization of voltage-gated Ca2+ channels, the α_2-δ UNC-36 subunit was tagged in the N-terminus with GFP. Ext., exterior; Int., interior; PL, proximal linker; AID, alpha interaction domain; GPI, glycoporphosphatidylinositol. (B) Young adults expressing a gfp::unc-36 MosSCI construct in an unc-36(e251) background were imaged on a confocal microscope with a ×63 objective (same for panels C–E). GFP fluorescence is visible in the head and body muscles, the pharynx and in most of the neurons of the head and the ventral nerve cord. Ventral side is right, head is up. (C) GFP fluorescence is detected in body muscle cells of the two dorsal quadrants. Animal is lying on the dorsal side, anterior is down. Scale bar: 50 μm for B,C. (D) GFP fluorescence is visible in body muscles, and in vulva muscles and neurons. Animal is lying on the ventral side, anterior is left. (E) GFP fluorescence is visible in body muscles and in neurons of the tail. Ventral side is left, tail is up. Scale bar: 25 μm for D,E.
idea that the decrease of the maximal conductance in body wall muscles of egl-19(n2368) animals is at least in part due to a disrupted plasma membrane localization of the channel.

DISCUSSION

In this study, we provide a detailed characterization of two gain-of-function mutants in egl-19, the gene that encodes the α1 subunit of L-type voltage-gated Ca\(^{2+}\) channels in *C. elegans* muscles. We showed that (1) the two variants n2368 and ad695 exhibit morphological and locomotion defects linked to a high muscle tone; (2) this high muscle tone is correlated to an increased sensitivity to the voltage of the channel and a decrease in the inactivation kinetics in both mutants; and (3) the L-type Ca\(^{2+}\) channel localization is altered in egl-19(n2368) mutants and the current conductance is decreased.

Why are the egl-19(gf) mutants hypercontracted? As in mammals, striated muscle contraction is dependent on action potentials firing (Liu et al., 2011; Liu et al., 2013); however, in *C. elegans* this firing involves voltage-gated Ca\(^{2+}\) channels and not voltage-gated Na\(^+\) channels (Jospin et al., 2002; Liu et al., 2011). Because of the increased sensitivity of the mutant channels to voltage, action potentials could be triggered by small depolarizations that would have no effect in wild-type. The increased propensity for action potentials would correlate with more frequent muscle contraction. Interestingly, the increase of muscle tone is more pronounced in egl-19(n2368) mutants, as is the modification of the voltage dependency. In egl-19(n2368) muscles, the shift of voltage dependency sets the current activation threshold around −30 mV instead of −20 mV in wild-type (Fig 3D). Because the resting membrane potential of body muscle cells is typically around −30 mV instead of −25 mV in wild-type (Gao and Zhen, 2011; Liu et al., 2011) and is not different in egl-19(n2368) (our unpublished data), these results suggest that the voltage-gated Ca\(^{2+}\) channels are open at this potential in egl-19(n2368) muscles. Moreover, the slowing down of inactivation in egl-19(n2368) mutants might also increase the calcium flux into the cell. Thus despite the conductance decrease in this mutant, the calcium flux into the cell even at resting potential is likely to be sufficient to increase muscle tone. Alternatively, and non-exclusively, the hypercontraction could also have a neuronal origin: egl-19 is expressed in motor neurons (Lee et al., 1997) and its partial loss-of-function specifically in these cells decreases muscle excitability (Gao and Zhen, 2011).

Muscle voltage-gated Ca\(^{2+}\) channels were visualized using a GFP-tagged α2-δ/UNC-36 subunit and were found distributed at the boundary of body wall muscles and as a punctuated pattern at the basal membrane. This pattern is reminiscent of the one observed by Kim et al. (Kim et al., 2009) with an EGL-19-mCherry multi-copy array. These authors concluded that EGL-19 is localized near the dense bodies, which are the analogs of Z-discs coupled to the costamere adhesion complex (Lecroisey et al., 2007). Interestingly,
flattened membrane vesicles are observed around the dense bodies between the plasma membrane and the myofilaments and they have been described as sarcoplasmic reticulum cisternae (Maryon et al., 1996). Further studies will be needed to determine whether voltage-gated Ca2+ channels are indeed in front of the sarcoplasmic reticulum.

ad695 mutation leads an alanine-to-valine change at residue 906 in the IIII4 segment (supplementary material Fig. S1). The \textit{S}4 segments contain four to seven repeated motifs of a positive charged residue followed by two hydrophobic residues that are critical components of the voltage sensor (Noda et al., 1984; Stühmer et al., 1989; Garcia et al., 1997). Mutations in these charged residues have been identified in \textit{L}-type channels from patients suffering from hyppPP (Fontaine et al., 1994; Jurkat-Rott et al., 1994; Ptácek et al., 1994; Wang et al., 2005; Chabrier et al., 2008; Li et al., 2012). One of these mutations has been shown to allow a Ca2+ leak through an aberrant conduction pathway, named the gating pore or the \textit{o} pore (Wu et al., 2012). Gating pore currents have been first recorded from voltage-gated K+ and Na+ channels (Starace and Bezanilla, 2004; Sokolov et al., 2005; Tombola et al., 2005). Depending on the nature of the mutations, these channels are activated at resting potentials or during depolarizations, and they are permeable either to protons or to several monovalent cations. In our study we described the functional effects of the substitution of a small hydrophobic residue for a larger one. Such a mutation has never been studied before in voltage-gated Ca2+ channels, but the role of hydrophobic residues in \textit{S}4 have been analyzed in Na+ and K+ voltage-gated channels (Auld et al., 1990; Lopez et al., 1991; McCormack et al., 1991; Bendahhou et al., 2007; Yang et al., 2007; Elliott et al., 2012; Perry et al., 2013). Bendahhou et al. have shown for Na+ voltage-gated channels that the size of the lateral chain can modify the half-activation potential and the inactivation kinetics (Bendahhou et al., 2007). These authors suggested that hydrophobic residues of \textit{S}4 segment influence molecular interactions between \textit{S}3 and \textit{S}4 segments, and thus act on the voltage detection. The **ad695** mutation leads to the replacement of an alanine by another hydrophobic residue, a valine, with a bigger lateral chain; this change could thus have a similar effect on voltage sensor as the one described for Na+ channels. Alternatively, Perry et al. have shown that mutations of the \textit{S}4 hydrophobic residues in cardiac K+ voltage-gated channels alter the inactivation kinetics by modifying the \textit{S}4 and \textit{S}5 interactions (Perry et al., 2013). Besides the voltage dependency and the inactivation kinetic defects, \textit{L}-type Ca2+ currents in egl-19(ad695) muscles reverse at more negative potentials, indicating a decrease of Ca2+ selectivity. Considering the localization of ad695 mutation in the \textit{S}4 segment and the lesser selectivity for Ca2+ of gating pore currents, it is tempting to propose that Ca2+ channels in egl-19(ad695) muscle might support a gating pore current. Gating pore currents have never been associated with mutations other than the ones swapping arginine residues, so further studies will be needed to test this hypothesis.

The **n2368** mutation causes a substitution of glycine with arginine at residue 365 of the IS6 segment (Lee et al., 1997). This glycine residue is the second glycine of a GXGXXG motif located in the lower third part of IS6, a residue conserved in all high voltage-activated calcium channels (supplementary material Fig. S1). Residue substitution experiments associated with crystal structure analysis extrapolated from K+ channels have demonstrated that S6 segments play a central role in voltage-dependent channel gating (Zhou et al., 2001; Hohaus et al., 2005; Long et al., 2005; Zhen et al., 2005; Beyl et al., 2007; Long et al., 2007; Kudrnac et al., 2009). In particular, glycine residues of the GXGXXG motif are involved in activation and inactivation mechanisms; mutations of these residues lead to a shift of the half-activation potential and a decrease of inactivation speed (Splawski et al., 2004; Splawski et al., 2005; Raybaut et al., 2006; Barrett and Tsien, 2008; Cens et al., 2008; Depil et al., 2011; Yazawa et al., 2011). Mutations of the second and third glycine have been identified in patients suffering from Timothy syndrome, a multisystem disorder mainly characterized by cardiac arrhythmias, autism and syndactyly (Splawski et al., 2004; Splawski et al., 2005). The **n2368** mutation replaces the second glycine by an arginine. Such a change has not been described before; however, the effects of replacement of this glycine by methionine, asparagine, alanine, serine or tryptophane have been analysed in rabbit L-type channels expressed in heterologous systems (Depil et al., 2011). Depending on the mutations, the half-activation potential was shifted towards more negative potentials, as we observed for egl-19(n2368), or towards more positive ones. In all cases, inactivation kinetics of these mutant channels was dramatically reduced. Finally, the replacement of glycine by arginine in the n2368 mutation creates a RX\textit{S} motif, a consensus sequence for phosphorylation by Ca2+/calmodulin-dependent protein kinase type II (CaMKII) (Kennelly and Krebs, 1991). Mutations of the third glycine have led to similar changes in some patients with Timothy syndrome. In heterologous expression systems, Erxleben et al. have shown that L-type channels carrying this kind of mutation exhibit an increase of the mean open time associated with a decrease of unitary conductance, both dependent on CaMKII activity (Erxleben et al., 2006). Thus CaMKII could also play a role in egl-19(n2368) mutants by modulating the properties of the mutant channels. What is the origin of the Ca2+ current conductance decrease in egl-19(n2368) muscles? This decrease can be caused by a reduction of the channel unitary conductance, as observed by Erxleben et al. (Erxleben et al., 2006) with a similar mutation, and/or by a decrease of the channel density at the cell surface. Our data showed that the channel localization is altered in egl-19(n2368) mutants; so the n2368 mutation in the IS6 segment seems at least to impair channel trafficking and/or recycling. The IS6 segment has never been shown to be involved in channel trafficking before; however, the n2368 mutation might have an effect beyond the IS6 segment. The I–II loop downstream of IS6 is crucial for proper targeting of the channel upon β subunit binding (Pragnell et al., 1994). Structure–function studies have shown that β binding at the alpha interaction domain (AID) of I–II loop induces a coil-to-helix conformation of the proximal linker, strengthening the connection between the pore and the β subunit/I–II loop complex (Opatsky et al., 2004; Van Petegem et al., 2004; Arias et al., 2005; Findeisen and Minor, 2009; Almagor et al., 2012). Proximal linker structure integrity is thought to be essential for β-dependent modulation of α\textit{t} gating but its role in the localization of the channel has been less investigated (Findeisen and Minor, 2009; Gonzalez-Gutierrez et al., 2010; Almagor et al., 2012). So according to these data, the n2368 mutation in IS6 could possibly disrupt the proximal linker integrity, decreasing β modulation of channel inactivation and α\textit{t} trafficking. Alternatively the mislocalization of the channel may be a consequence of the mutated calcium channel hyperactivation. Ca2+ influx through L-type Ca2+ channels has been shown to couple membrane excitation to transcription (D’Arco and Dolphin, 2012). In particular, the distal C-terminal domain of L-type channels may act as a transcriptional regulator. The cleavage of this domain is thought to be Ca2+ dependent, and the resulting transcription factor has been shown to modulate the transcription of several genes, including the gene encoding the L-type α\textit{t} subunit itself (Gomez-Ospina et al., 2006; Schroder et al., 2009). The increased calcium flux in egl-19(n2368) muscles, even at resting potentials, could
decrease egl-19 transcription level or modify the expression of proteins involved in Ca2+ channel trafficking or recycling. Now that we have characterized the effects of egl-19(gef) mutations on L-type voltage-dependent currents, we are planning to use these mutants to identify new partners of the L-type Ca2+ channel using genetic screens. In cardiomyocytes of mice, Cheng et al. have shown that downregulation of the anchoring protein AKAP150 restores normal gating of L-type Ca2+ channels carrying a Timothy syndrome mutation (Cheng et al., 2011). We believe that identification of new partners of this channel could lead to novel therapeutics targets for treating pathologies involving L-type channels, such as hypoPP or Timothy syndrome.

MATERIALS AND METHODS

Nematode strains and growth conditions

All C. elegans strains were grown at 20°C according to the method of Brenner (Brenner, 1974). N2 Bristol, DA695 egl-19(ad905) IV, MT612 egl-19(n2368) IV, CB251 unc-36(e251) III and EG4322 [trll5605 II, unc-119(ed9) III] strains were provided by the Caenorhabditis Genetics Center (CGC, Twin Cities, MN, USA).

Molecular biology

The targeting vector (pHZ025) used to generate the krSi3(II) line was built as follows. A plasmid containing the unc-36 cDNA was provided by C.I. Bargmann (Saheki and Bargmann, 2009). This plasmid was digested by KpnI and EcoRI to remove egfp from the unc-36 C-terminus, treated with T4 polymerase and circularized by self-ligation, resulting in the plasmid pHZ001. Next, egfp was fused in frame after the signal-peptide coding sequence in the unc-36 cDNA by PCR fusion. First, egfp was amplified using oHZ07 5′-TTGCGGAGCTCACAGAGCGA-3′ and oHZ09 5′-AAAGCATGGATTT-3′ to generate backbone, resulting in pHZ025. ApaI digestion of this vector was used to remove EcoRI linker and egl-19(egf) was fused in frame after the signal-peptide coding sequence in the unc-54 UTR. A fragment containing the egl-19(egl) cDNA was released from pHZ009 using oHZ021 5′-ATGCGATG-3′ and oCF419 5′-ATGCGATG-3′, and this sequence was fused in frame after the signal-peptide coding sequence in the unc-36 cDNA by PCR fusion. First, egfp was amplified using oHZ07 5′-TGCGGAGCTCACAGAGCGA-3′ and oHZ09 5′-TTTCTTTATGCTCTCTTATAAAGTCCATGCAGTGTAACCCC-3′. Next, the unc-36 cDNA was amplified using oHZ021 5′-ATGGCATGACTCCTTTAAGAAGA-3′ and oHZ08 5′-AAAGGATCTTTGTTCCTTCAGATTAT-3′. Both fragments were then fused by PCR fusion using oHZ07 and oHZ08 and the resulting fragment was inserted into a MscV/BglII-digested pHZ001. A 2 kb region upstream of the unc-36 open reading frame was amplified from genomic DNA using oHZ09 5′-AAAGAAGCGGCGGAAATGCATGCAGTAATTAGTGTCC-3′ and oHZ010 5′-TGCGGACCTTATAAAGCTCCTGTTG-3′, and this sequence was inserted into the previous plasmid after NotI and MscI digestion, resulting in plasmid pHZ009. Finally, the transgene sequence (Punc-36::egfp::unc-36::3′UTR unc-54) was released from pHZ009 using NotI and Apal, blunt-ligated to T4 polymerase and inserted into the pCJ3151 vector backbone, resulting in pHZ025.

We followed the direct-insertion MosSCI protocol (Frokjaer-Jensen et al., 2008) to generate krSi3. In brief, we micro-injected the gonads of EG4322 worms with a DNA mix containing: the targeting vector pHZ025 at 50 ng μl-1, plJ43.1 at 50 ng μl-1 (Mos transposases expressed under germline constitutive promoter Pglh-2), and transformation markers pMv33::gfp at 10 ng μl-1 and pRab3::gfp at 10 ng μl-1. MosSCI events were selected by screening for the restoration of wild-type locomotion and loss of the transformation markers. The krSi3 insertion was validated by PCR using oCF418 5′-TCTGCGGCTGTTTGCTTCCTCTGTTG-3′ and oCF419 5′-CAATCTATCCCGGTTTCTGTTG-3′ (Frokjaer-Jensen et al., 2008). krSi3 was subsequently crossed into the unc-36(e251) null mutant, resulting in EN5403 krSi3[unc-36::egfp::unc-36, cb-unc-119(+) II; unc-36(e251) III]. EN5403 was further crossed with egl-19(ad905) and egl-19(n2368) to generate KAG200 and KAG214, respectively. All enzymes were obtained from Thermo Fisher Scientific (Waltham, MA, USA).

Phenotype analysis and pharmacology

For morphological analysis, 20–30 L4 larvae were placed on freshly seeded nematode growth medium (NGM) plates at 15°C. The following day, individual worms were transferred into a small drop of M9 buffer and imaged on an Olympus IMT2 (Hamburg, Germany) microscope. The animal width and length were determined using ImageJ software (NIH Image, Bethesda, MD, USA): length was measured using a segmented-line spline fit from the tip of the nose to the region where the tail is 10 μm wide, and width was measured just posterior to the vulva. In pharmacological assays, 10 young adult worms were imaged after a 30 min incubation with 0.5 mmol l-1 levamisole or 10 mmol l-1 muscimol. For each animal the ratio width/length was determined before and after the drug treatment and the percentage of variation was calculated.

For locomotion tests, 10–20 L4 larvae were placed on freshly seeded NGM plates at 15°C. The following day, individual animals were transferred into a microtiter well (Corning Inc., Corning, NY, USA) containing 50 μl of M9 buffer on top of 2% agar in M9. After a 2 min recovery period, thrashes were counted for 1 min. A thrash was defined by Miller et al. (Miller et al., 1996) as a change in the direction of bending at the mid-body. All chemical were obtained from Sigma-Aldrich (St Louis, MO, USA).

Electrophysiology

Microdissection of C. elegans and electrophysiological methods were performed as described previously by Lainé et al. (Lainé et al., 2011). Membrane currents were recorded in the whole-cell configuration using an RK-400 patch-clamp amplifier (Bio-Logic, Clay, France). Acquisition and command voltage were controlled using pCLAMP9 software driving a 1322A Digidata (Molecular Devices, Sunnyvale, CA, USA). Data were analysed and graphed using pCLAMP9 and Origin (OriginLab, Northampton, MA, USA) software. The resistance of recording pipettes ranged between 2.5 and 3 MΩ. Recordings were performed after 1 min dialysis only on cells exhibiting resistances above 800 MΩ. Capacitance and resistance were not compensated.

For whole-cell Ca2+ currents, the bath solution contained (mmol l-1): 140 tetraethylammonium chloride (TEACl), 6 CaCl\textsubscript{2}, 3 MgCl\textsubscript{2}, 4-aminopyridine (4-AP), 10 Hepes and sucrose to 337 mosmol l-1 (pH 7.2); and the pipette solution contained (mmol l-1): 140 CsCl, 5 TEACl, 5 EGTA, 5 Hepes, 4 MgATP and sucrose to 328 mosmol l-1 (pH 7.2). The membrane potential was held at −60 mV, and currents were recorded by applying 200 ms voltage steps from −70 to −70 mV in 10 mV-1 increments. Leak currents were subtracted from all recordings. Current–voltage relationships were established by measuring the currents at the peak of the current and were fitted with the following equation:

\[
I(v) = G_{\text{max}}(v - V_{\text{rev}}) [1 + e^{(v(V_{\text{rev}}) + V_{\text{ref}})}],
\]

where \(I(v)\) is the measured density of current, \(v\) is the test voltage pulse, \(G_{\text{max}}\) is the maximum conductance, \(V_{\text{rev}}\) is the reversal potential, \(V_{\text{ref}}\) is the half-activation voltage and \(k\) is the steepness factor. To plot the mean current traces, the current trace of maximal amplitude was normalized to the peak current intensity for each cell, and then averaged. The time constant of activation \(\tau\) was obtained by fitting a single exponential function to the current from the point where the charge of capacitance was completed to the peak of the current. The fractional inactivation \(R_{200}\) represents the current fraction still present at the end of the pulse:

\[
R_{200} = \frac{I_{500\text{nm}}}{I_{\text{peak}}},
\]

All experiments were done at room temperature.

Fluorescence microscopy

Young adults carrying krSi3 were transferred into a drop of M9 containing 20 mmol l-1 sodium azide on a top of an agarose pad. Animals were imaged on an inverted LSM 5 Exciter laser scanning confocal microscope (Zeiss, Oberkochen, Germany) equipped with a ×63 oil immersion objective, ×1.4 numerical aperture. GFP was excited at 488 nm, and the emission from 505 to 600 nm was collected. Muscle cells were imaged in the head region of the animals and were analysed with the software ImageJ (NIH Image, Bethesda, MD, USA). Mean fluorescence of basal plasma membrane was quantified from an 18 μm2 area in the middle region of the cells.

Acknowledgements

We thank the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health (NIH) Office of Research Infrastructure Programs (P40 OD010440) for strains, C. I. Bargmann for cDNA, M. Peters and T. Boulin for...
critical reading of the manuscript, and K. Gieseler and B. Allard for sharing facilities and scientific inputs.

Competing interests
The authors declare no competing financial interests.

Author contributions
J.L.B. designed, performed and analysed the experiments and wrote the manuscript. J.-L.B. wrote the manuscript. M.J. designed, performed and analysed the experiments and wrote the manuscript.

Funding
This work was supported by the Centre National de la Recherche Scientifique, the Université Lyon 1, the Société Française de Myologie, the Fondation Pierre Gilles de Gennes and the Fédération pour la Recherche Medicale.

Supplementary material
Supplementary material available online at http://jeb.biologists.org/cgi/suppl.cgi?doi:10.1242/jeb.106732/-/DC1

References

Fig. S1. Sequence similarity between α₁ subunits from Caenorhabitis elegans, Lymneae stagnalis and Homo sapiens. The accession numbers are: C. elegans, EGL-19 NP_741442.1; L. stagnalis L-type α₁ subunit, AAO83839.1; H. sapiens CACNA1C, NP_000710.5; H. sapiens CACNA1S, NP_000060.2; C. elegans UNC-2, NP_741734.1; L. stagnalis P/Q-type α₁ subunit, AAO83841.1; H. sapiens CACNA1A, NP_000059.3. (A) The GX9GX3G motif in the S6 segment of the first domain (IS6) is conserved in all high voltage-activated α₁ subunits (L- and P/Q/R/N-types). The location of mutation in egl-19(n2368) is boxed in black: the glycine is replaced with an arginine. (B) The voltage sensor S4 segment of the third domain (IIIS4) is well conserved in all high-voltage-activated α₁ subunits (L- and P/Q/R/N-types). Charged residues (lysine or arginine) are highlighted in bold. The location of mutation in egl-19(ad695) is boxed in black; the alanine, conserved in all L-type α₁ subunits, is replaced with a valine.

<table>
<thead>
<tr>
<th></th>
<th>IS6</th>
<th>IIIS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. elegans</td>
<td>L-type EGL-19</td>
<td>PWIYFVTLVILGSFFVLNLVLGVSGEFS</td>
</tr>
<tr>
<td>L. stagnalis</td>
<td>L-type</td>
<td>PWIYFISLIIIGSFFVLNLVLGVSGEFS</td>
</tr>
<tr>
<td>H. sapiens</td>
<td>L-type CACNA1C</td>
<td>PWIYFVTLLIIIGSFFVLNLVLGVSGEFS</td>
</tr>
<tr>
<td>H. sapiens</td>
<td>L-type CACNA1S</td>
<td>PWIYFVTLLIIIGSFFILNLVLGVSGET</td>
</tr>
<tr>
<td>C. elegans</td>
<td>P/Q-type UNC-2</td>
<td>NWAYFIPLIVLGSFFMLNLVLGVSGEFA</td>
</tr>
<tr>
<td>L. stagnalis</td>
<td>P/Q-type</td>
<td>NFLYFIPLIIIGSFFMLNLVLGVSGEFA</td>
</tr>
<tr>
<td>H. sapiens</td>
<td>P/Q-type CACNA1A</td>
<td>NWLYFIPLIIIGSFFMLNLVLGVSGEFA</td>
</tr>
</tbody>
</table>

A. IS6

C. elegans L-type EGL-19 PWIYFVTLVILGSFFVLNLVLGVSGEFS
L. stagnalis L-type PWIYFISLIIIGSFFVLNLVLGVSGEFS
H. sapiens L-type CACNA1C PWIYFVTLLIIIGSFFVLNLVLGVSGEFS
H. sapiens L-type CACNA1S PWIYFVTLLIIIGSFFILNLVLGVSGET
C. elegans P/Q-type UNC-2 NWAYFIPLIVLGSFFMLNLVLGVSGEFA
L. stagnalis P/Q-type NFLYFIPLIIIGSFFMLNLVLGVSGEFA
H. sapiens P/Q-type CACNA1A NWLYFIPLIIIGSFFMLNLVLGVSGEFA

B. IIIS4

C. elegans L-type EGL-19 VKILRVLVRPLRAINRA
L. stagnalis L-type VKILRVLVRPLRAINRA
H. sapiens L-type CACNA1C VKILRVLVRPLRAINRA
H. sapiens L-type CACNA1S VKILRVLVRPLRAINRA
C. elegans P/Q-type UNC-2 IKSLRVLRPLKTIRI
L. stagnalis P/Q-type IKSLRVLRPLKTINRV
H. sapiens P/Q-type CACNA1A IKSLRVLRPLKTIRL