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Introduction
Hair cells are highly specialized mechanoreceptors in the ears of

vertebrate animals that transduce the component of force directed

along their sensitive axis into an electrical signal, with sufficient

sensitivity to detect Brownian motion of the eardrum. The sensory

information is then transmitted across a chemical synapse to the

postsynaptic afferent axon, where it is encoded as train of spikes

that travel to the brain. Along the way, the signal is filtered to

enhance a range of frequencies. Much of the recent work on the

cellular physiology of hair cells has been aimed at understanding

the input–output relation of each step in this process, with the goal

of a complete understanding of the relationship between a time-

varying mechanical input and the resulting time-varying spike

probabilities in postsynaptic afferent axons.

One important basic question is whether the input–output relation

can be usefully regarded as linear over some limited range of

stimulus strength, or whether nonlinear properties are essential for

the response to even the smallest of stimuli. Linearity has advantages

beyond simplicity, especially for separating signal from noise. If

the main source of variability in the response to a given input is

additive noise applied at the input (e.g. Brownian motion of the

eardrum and hair bundle), then a linear sensor is particularly useful

because it can be regarded as operating independently on signal and

noise. If the separate responses to signal and noise are known,

outputs of linear sensors can be summed and filtered to predictably

amplify signals relative to noise. On the other hand, the classic

description of logarithmic input–output relations in sensory systems

(the Weber–Fechner law) emphasizes the multiplicative nature of

perceptual uncertainty, and the advantage of a compressive non-

linearity for extending the range of non-saturating stimuli.

These two views are not necessarily incompatible, since they

employ different measures of the input and output. In the conceptual

framework of psychophysics (e.g. the Weber–Fechner law and

Stevens’ Power Law), both the stimulus intensity and response

amplitude are a non-negative numbers that equal zero when there

is no stimulus, whereas mechanosensory transduction by hair cells

is directional, with positive and negative stimuli generating opposite

responses. Directionality of hair bundle movement may be irrelevant

for some tasks, such as judging whether one sound is louder than

another, and crucial for others, such as judging the location of a

sound source by the time delay between the two ears or for vestibular

sensation. The same sensor can be regarded as either linear or

nonlinear relative to different sets of measures used to assess its

performance in different tasks. It is even possible to have the best

of both worlds, as when a memoryless compressive nonlinearity is

applied to the output of a linear system. Since a compressive

nonlinearity can be unambiguously undone, the linear response can

later be recovered from the compressed signal. But this waffling

avoids the question of whether it is more useful to emphasize

linearities or nonlinearities when thinking about how hair cells

respond to small stimuli. In keeping with this theme, it seems fitting

that some recent work concludes that hair cells are actively

maintained near the boundary between a well-behaved linear system

and a spontaneously oscillating non-linear system (Choe et al., 1998;

Camalet et al., 2000; Martin et al., 2003; Vilfan and Duke, 2003;

Jülicher et al., 2001).

Many hair cells have surprisingly linear responses to small inputs

(e.g. Crawford and Fettiplace, 1981; Brandt et al., 2005). Perhaps

they do this to best preserve directional information about small

signals corrupted by uncorrelated additive noise by responding

symmetrically (more or less) to forces applied in opposite directions.

Fig. 1 shows an idealized current–displacement curve for a hair cell’s

mechano-electrical transducer recorded a few milliseconds after the

application of displacement steps of various amplitudes from the

resting position, after the response has stabilized, but before

adaptation sets in. The responses to large stimuli are highly nonlinear
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in that they saturate in both the positive and negative directions, but

the transducer is biased away from positive or negative saturation

such that its responses to small displacements from zero are

reasonably linear. Over any small range of displacements, the curve

looks approximately like the tangent line, which is to say that there

is no discontinuity or sharp change in slope that would indicate a

threshold nonlinearity. The slope of the tangent line is the

transducer’s sensitivity to small changes in hair bundle position,

which attains a maximum at the center of the curve and declines

towards zero in both directions.

It is worth noting that the small signal sensitivity would be greatest

and the response more symmetrical if the resting position of the

transducer were at the point of maximum slope on the

current–displacement curve (Fig. 1). Instead, many hair cells sit on

the ascending limb, close to the point of maximum curvature.

Mammalian cochlear hair cells make use of the resulting nonlinearity

to respond to sounds at high frequencies (>10 kHz), where the

unavoidable membrane capacitance greatly attenuates membrane

potential oscillations, which constitute the linear part of the response,

but leaves a depolarization caused by the amplitude asymmetry of

the transduction current. The sensitivity of this non-linear component

approaches zero as the amplitude of the sound decreases (i.e. the

curve looks locally like a straight line), but responses are seen when

high frequency sounds are loud enough to produce significantly

asymmetric transduction currents (Russell and Sellick, 1983). High

frequency hearing in mammals thus involves an essential

nonlinearity, although it remains to be seen whether later stages of

signal processing, such as synaptic transmission, are more linear.

Recently, a different significance has been proposed for the precise

resting position on the current–displacement curve. In these models,

feedback causes the transduction apparatus to seek a resting state

near (but not at) a Hopf bifurcation (see below), where the gain of

its response to small sinusoidal forces approaches infinity. This

behavior can only be seen if the stimulus is applied as a force, rather

than a displacement. In vivo, the input to many hair cells is

somewhere in between a pure force and a pure displacement (Martin

et al., 2003).

At this point it seems useful to define ‘linear’, especially because

it was misused in the previous paragraphs. Before one can say that

the input–output relation shown in Fig. 1 is approximately linear

for small displacements around the resting position (x=0), the y-

axis must be offset by subtracting the resting transduction current.

This type of output offset of an otherwise linear system is

conventionally ignored because it is easily subtracted. More

importantly, we have ignored time. In general, a linear system

transforms a time-varying input, g(t), into a time-varying output,

h(t), and obeys laws of scaling and superposition. An additional

requirement of shift-invariance is often an unstated assumption. If

a linear system transforms g(t)rh(t), the scaling property requires

that a·g(t)ra·h(t), where a is any constant. The superposition

property states that if g1(t)rh1(t) and g2(t)rh2(t) then g1(t)+g2(t)r
h1(t)+h2(t). Shift invariance requires that shifting the input along

the time axis simply shifts the output by the same amount.

Linearity does not require that the shape of the output waveform

bear any particular relationship to the shape of the input waveform.

Many hair cells respond to a current step with a damped oscillation

of the membrane potential. By itself, this says nothing about linearity

of the voltage–current relation. Linearity implies that if the step is

made twice as large, then the response becomes twice as large while

maintaining the same shape, and that steps from rest in opposite

directions evoke opposite responses (Crawford and Fettiplace,

1981). The scaling property requires that the response to constant

zero input is constant zero output. Shift invariance implies that if

g(t) is a constant function of time, then so is h(t). Thus, hair cells

that produce large membrane potential oscillations in the absence

of any stimulus are fundamentally non-linear because they violate

both scaling and shift invariance. Small oscillations might, perhaps,

be judiciously ignored.

Finally, linear responses may be particularly important to the

auditory and vestibular systems because sounds and accelerations

from different sources usually combine linearly, unlike in vision,

where nearby objects hide what lies behind. Linearity aids in

decomposing additively combined sensory inputs into behaviorally

relevant components for the same reason that it aids in separating

signal from additive noise. To take advantage of this, the

mechanical workings of the outer, middle and inner ears that direct

mechanical stimuli arising from different sounds and accelerations

in three dimensions onto the appropriate sensory structures in the

ear operate nearly linearly over a wide range of stimulus

amplitudes.

Stability of linear and nonlinear systems
Recent experiments and mathematical models of hair cell function

place the resting hair cell near a point of transition between stable,

approximately linear behavior, and instability. The mathematical

models used to describe this behavior consist of equations that

specify the feedback interactions among a set of state variables {xi(t),
i=1, 2,..., n}, in which each of the states can potentially influence

all of the others. The state variables must be chosen such that their

values at any time t completely specify the state of the system at

that time, regardless of system’s history. The interactions among

the state variables are specified as the rate of change of each state

variable xi as a function fi of the instantaneous values of all the other

state variables:

dxi /dt = fi(x1, x2,..., xn) . (1)

This type of dynamical model is very general, and therefore

conceptually simple. To simulate the system’s behavior, one begins

with some known initial state [x1(t0), x2(t0),..., xn(t0)], divides time

into small increments Δt, calculates (dxi/dt) for each state variable,

and extrapolates linearly to the state at time t+Δt [x1(t0+Δt),
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Fig. 1. The relationship between hair bundle displacement and the resulting
current through transduction channels. At rest (displacement=0) the
transducer in many hair cells lies to the left of center on the curve (filled
circle), and therefore not at the point of maximum sensitivity or greatest
linearity to small inputs.
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x2(t0+Δt),..., xn(t0+Δt)]. If the time steps are sufficiently small,

extrapolation errors can be ignored.

Standard ways of thinking about cell biological and biophysical

problems easily fit into this framework. For example, the state

variables for chemical reactions are the concentrations of the

reactants and products, and the rate equations specify their time

derivatives. Electrical and mechanical systems are similarly simple

to deal with. The problem, of course, comes with using the equations

to predict the system’s behavior. Simulation provides specific

answers but sometimes little insight, which is often better obtained

by approximating a complex system by something simpler. Linear

approximations are attractive, both because linear systems are

relatively easy to understand and because there exists a simple

procedure to find the best linear approximation to any dynamical

system formulated as described above. The procedure involves

evaluating, for all pairs of states (i, j), the effect that perturbing xj

has on fi while holding all of the other state variables constant. The

resulting set of partial derivatives �fi/�xj is called the Jacobian matrix,

J, where: 

Jij = �fi / �xj . (2)

Thus, the nonlinear mutual interactions among a large set of state

variables is approximated by the sum of pairwise linear interactions.

How good an approximation depends on specifics of the problem

at hand, but one important general result predicts the behavior of

the nonlinear system near a ‘stationary’ state (i.e. a set of values of

the state variables for which all of their time derivatives are zero).

A stationary state can be a stable steady state to which the system

returns when perturbed, or it can be unstable, like a coin balanced

on edge. The important general result is that the eigenvalues of the

Jacobian matrix, which are readily calculated numerically for even

large matrices, determine whether a stationary state of the nonlinear

system is stable. Furthermore, if the system is stable, the eigenvalues

predict how the state variables return to the stable state after a

perturbation. If the stationary state is unstable the linear

approximation explodes, and fails to predict the behavior of the

nonlinear system.

One class of unstable stationary states that has received much

recent attention in hearing research is called a Hopf bifurcation. The

term applies to a nonlinear system in which a control variable μ
determines whether the stationary state is stable. For μ<0 the system

is stable and behaves approximately linearly near the stationary state.

As μ is increased towards zero the system grows increasingly

unstable until, for μ>0 the system oscillates, either falling into a

limit cycle or spiraling to infinity, depending on other parameter

values [for a nice discussion of Hopf bifurcations, see Ospeck et

al. (Ospeck et al., 2001)].

Examples of stable and unstable stationary states abound. The

constant membrane potential of a neuron at rest is a stable stationary

state of the nonlinear interactions among the ion channels that set

the resting potential and the membrane capacitance, which is

critical for stability. Reducing the membrane capacitance can

change the stable stationary state into an unstable state. Some

neurons fire a repetitive train of spikes in the absence of any input.

The nonlinear interactions between ion channels in these cells

generate limit cycles, in which the system’s state follows a closed

orbit around an unstable stationary state. Limit cycles are common

in nonlinear systems, but impossible in linear systems that obey

shift invariance. Unless driven by a time-varying input, these systems

either settle onto a stable stationary state or explode to infinity.

As a final example, we consider the exponentially damped

membrane potential oscillations that many hair cells exhibit when

perturbed by current steps or pulses (electrical resonance). This

phenomenon is readily understood in terms of the eigenvalues of

the Jacobian matrix associated with a simple linear model. When a

linear system specified by a Jacobian matrix is perturbed, the system

relaxes back to its stable state over a trajectory that is the sum of

exponential functions, A1exp(λ1t)+A2exp(λ2t)+...+Anexp(λnt), where

the λi are the eigenvalues. If λi is real, then exp(λit) is a simple

exponential function of time. If λi is complex, then exp(λit) is product

of an exponential with a sinusoid. Complex eigenvalues imply that

the system oscillates when perturbed from a stationary state. If the

real parts of the λi are all negative, then the oscillations are damped,

otherwise they grow to infinity. The model of electrical resonance

in turtle hair cells (Crawford and Fettiplace, 1981) behaves like an

electrical circuit consisting of a resistor, capacitor and inductor, or

equivalently a mass attached to a spring damped by friction. In these

models the eigenvalues are complex and have a negative real part,

such that after the system is perturbed each of its state variables

(e.g. membrane potential) relaxes back to its stable state along an

exponentially damped sinusoidal time course, which is the observed

response of the cell.

Evoked and spontaneous hair bundle movements
The hair bundle is composed of many individual stereocilia, each

with its own transduction apparatus, but the bundle moves as a unit

(Kozlov et al., 2007), so a single state variable suffices to specify

its displacement. An external force, F(t), applied to the tip deflects

the hair bundle. The force is transmitted to mechanically gated ion

channels (transduction channels) through elastic links called gating

springs that pull the channels open, producing a transduction

current that changes the hair cell’s membrane potential.

When a transduction channel opens its gating spring relaxes, and

when it closes the spring stretches, applying a force that adds to

F(t) and causing the hair bundle to move (Crawford and Fettiplace,

1985; Howard and Hudspeth, 1988). Hair bundle movements and

other force generators associated with auditory transduction (e.g.

outer hair cell motility in the mammalian cochlea) can propagate

back towards the stimulus, causing the eardrum to vibrate and emit

sounds (otoacoustic emissions). This bidirectional coupling between

the sensory stimulus and the transduction mechanisms is a unique

feature of mechanosensory transduction that can lead to instability,

as evidenced by spontaneous otoacoustic emissions.

Maintained displacement of the hair bundle causes transduction

to adapt in two phases (Howard and Hudspeth, 1988; Ricci and

Fettiplace, 1998; Martin and Hudspeth, 1999; Wu et al., 1999; Ricci

et al., 2000; Holt and Corey, 2000; Eatock, 2000; Holt et al., 2002;

Ricci et al., 2002; Vilfan and Duke, 2003; Vollrath and Eatock,

2003; Martin et al., 2003; Ricci et al., 2005; Cheung and Corey,

2006) (reviewed by LeMasurier and Gillespie, 2005; Fettiplace,

2006). The slow phase operates on a time scale of tens to hundreds

of milliseconds and is responsible for establishing resting tension

in the gating springs, although it has not been reported in mammalian

cochlear hair cells. Slow adaptation is accomplished by a myosin

motor that stretches the gating springs until the channels begin to

open. The open transduction channels admit Ca2+ into the cell. Ca2+

inhibits the adaptation motor, allowing it to slip back, establishing

a dynamic equilibrium at which each transduction channel is open

part of the time. This partial activation of the transduction machinery

moves the system away from positive or negative saturation, into

a more linear range where small positive or negative deflections of

the hair bundle produce symmetrical positive or negative

transduction currents. Two state variables per transduction channel

are required to describe slow adaptation: the position of the
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adaptation motor and the Ca2+ concentration that regulates it. The

50–100 transduction channels per hair cell can be modeled as

individual elements (Beurg et al., 2008), but have usually been

combined into a single element to reduce the number of state

variables.

When a force applied to the hair bundle opens transduction

channels, the resulting relaxation of the gating springs causes the

hair bundle to move farther than it would have if the channels

had remained closed. When the hair bundle is allowed to move

freely, this gating compliance can create a region of apparent

negative bundle stiffness. If the set point for slow adaptation is

within this region, the hair bundle oscillates spontaneously as the

adaptation motor attempts the Sisyphean task of returning the

bundle to an unstable position (Crawford and Fettiplace, 1985;

Howard and Hudspeth, 1987; Martin et al., 2003). The resulting

oscillation can be large enough to cause the transduction channels’

open probability to alternate between 15% and 70% (Martin et

al., 2003). Such large oscillations would nullify any assumption

of linear transduction, were it not for stabilizing factors such as

the tectorial membrane or similar structures that are attached to

hair bundles in vivo. In mammalian inner hair cells either this

mechanism does not operate or other factors must be present to

prevent large spontaneous oscillation of the cells’ free-standing

hair bundles.

The fast phase of adaptation, which in some hair cells can take

place in a fraction of a millisecond (Ricci et al., 2005), operates

quite differently from slow adaptation, and also appears to be

involved in mechanical amplification. It is caused by Ca2+ binding

directly the transduction channel or some closely associated

molecule, and has the opposite mechanical effect from slow

adaptation (reviewed by Fettiplace, 2006). Transduction channels

exist in two conductance states (open or closed), but to describe the

fast component of adaptation requires adding a third, Ca2+-bound

state. Ca2+ binding promotes the closure of an open transduction

channel, which then pulls upon the gating spring, causing the hair

bundle to move against the applied force, generating a ‘twitch’ that

can cause the hair bundle to oscillate briefly in response to a force

step (Hudspeth et al., 2000). The energy required to produce this

damped oscillation comes from the steep electrochemical gradient

to Ca2+, which drives Ca2+ into the cell when transduction channels

open. It has been proposed that the myosin motor also contributes

to fast adaptation (Martin et al., 2003; Stauffer et al., 2005). Several

models of hair bundle mechanics have incorporated fast adaptation

(Choe et al., 1998; Camalet et al., 2000; Vilfan and Duke, 2003;

Ricci et al., 2005; Beurg et al., 2008). Differences in the speed of

fast adaptation in outer hair cells may contribute to frequency

selectivity (Ricci et al., 2005; Kennedy et al., 2005).

Spontaneous hair bundle oscillations have led several

investigators to propose that adaptation serves to position the

unstimulated hair bundle close to a Hopf bifurcation (Choe et al.,

1998; Camalet et al., 2000; Martin et al., 2003; Vilfan and Duke,

2003). In the neighboring stable region the Jacobian matrix describes

the system’s linear behavior. Near the bifurcation the system has

an extremely high-gain, approximately linear response to small,

applied forces at a preferred frequency (Martin and Hudspeth, 2001).

Larger forces engage a compressive nonlinearity that obeys a power

law with exponent=1/3 (Martin and Hudspeth, 2001). If the system

is to maintain an approximately linear small-signal response, it is

important that the hair cell’s operating point remains on the linear

side of the Hopf bifurcation (Eguíluz et al., 2000). The large

spontaneous oscillations that have been recorded indicate that, under

the experimental conditions studied, the hair bundle does not stay

in the linear region, but in vivo the mechanical load of structures

attached to the hair bundle are expected to prevent or greatly reduce

spontaneous oscillation (Martin et al., 2003). As with all feedback

systems, taking the system apart can result in behaviors that are

radically different from the behavior of the intact system, which

has led some to question the usefulness of Hopf bifurcation models

of cochlear function (Zweig, 2003).

The mechanisms responsible for the exquisite sensitivity and

frequency selectivity in the mammalian cochlea are not fully

understood. Outer hair cells in the cochlea possess force generators

along their lateral walls that are hypothesized to underlie the

mammalian ‘cochlear amplifier’ (Dallos et al., 2006; Ashmore,

2008). This mechanism appears to be unique to mammals, and has

therefore received much attention as a possible source of the unique

properties of the mammalian cochlea, particularly high sensitivity

and frequency selectivity above 10 kHz. However, this force is

controlled by membrane potential, which is attenuated by the

membrane’s electrical time constant, such that the amplitude of high-

frequency oscillations falls off in proportion to 1/frequency, which

poses difficulties for amplification at frequencies above 15 kHz

(Ospeck et al., 2003; Dallos et al., 2006). The lateral wall force

generator cannot, by itself, explain frequency tuning in the

mammalian cochlea because it does not appear to exhibit tonotopic

differences, but by counteracting viscous damping it could enhance

the tuning from other sources. There is also evidence that

mammalian inner hair cells employ the same hair bundle

amplification mechanism found in other vertebrates (Chan and

Hudspeth, 2005; Ricci et al., 2005). This mechanism may be better

suited to operate at high frequencies because it relies on changes

in local Ca2+ concentration within nanometers of a source (the

transduction channel), which can rise and fall on a microsecond

time scale.

Evoked and spontaneous membrane potential oscillations
The next step in sensory reception involves excitability of the hair

cell basolateral membrane. Unlike nearly all neurons, most adult

hair cells in the auditory system do not produce all-or-none voltage

changes. They do express voltage-gated Ca2+ channels and several

types of voltage-gated and Ca2+-gated K+ channels that are capable

of producing highly nonlinear responses, but as with transduction

the system appears to be designed to generate nearly linear responses

to small perturbations from the resting state. Some vestibular hair

cells generate large spontaneous membrane potential fluctuations

that are better described as limit cycles of a nonlinear system. 

The auditory hair cells of fish, amphibians, reptiles and birds

typically respond to a current step with a damped oscillation of the

membrane potential (Crawford and Fettiplace, 1981; Ashmore,

1983; Lewis and Hudspeth, 1983; Fuchs and Evans, 1988; Fuchs

et al., 1988; Sugihara and Furukawa, 1989; Steinacker and Romero,

1992) at a frequency that varies with the cell’s position along a

tonotopic axis (reviewed by Fettiplace and Fuchs, 1999). This

phenomenon has been studied most extensively in the turtle cochlea,

where small positive and negative current steps evoke symmetrical

voltage oscillations around the resting potential that scale with the

step amplitude. The resting transduction current caused by the slow

mechanical adaptation described above may be an important factor

in depolarizing Vm into this linear operating range (Farris et al.,

2006). Vm also influences adaptation through its effect on Ca2+

influx.

The simplest model of electrical oscillations in hair cells is a linear

electrical circuit consisting of a capacitor, resistor and inductor (Art

and Fettiplace, 1987). In this model, the ‘phenomenological

W. M. Roberts and M. A. Rutherford
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inductance’ is provided by K channels, which behave like an

inductor in series with a resistor. More detailed models based on

the voltage- and Ca2+-dependent gating properties of several classes

of ion channels that interact with the membrane capacitance have

also been used (Hudspeth and Lewis, 1988; Ospeck et al., 2001;

Jørgensen and Kroese, 2005). The number of variables needed to

specify the states of these channels can be quite large, but there is

no difficulty constructing models that reproduce the observed

behavior.

Some auditory hair cells from amphibians, reptiles and birds have

step responses that undergo many cycles of damped oscillation, but

not all hair cells are so sharply tuned. In many fish and amphibians,

the sacculus is an important auditory organ. The frog sacculus is

sensitive to sounds in the 5–200 Hz range, with much greater

sensitivity to vibrations conducted through the ground than through

the air (Christensen-Dalsgaard and Narins, 2003). Studies of goldfish

(Sugihara and Furukawa, 1989) and frog (Armstrong and Roberts,

1998) sacculus have shown that hair cells in these organs typically

respond to large current steps with highly damped membrane

potential oscillations, suggesting that they each respond over a broad

range of frequencies.

In some species, ‘electrical resonance’ is a major factor in

establishing the frequency selectivity and the tonotopic organization

of the auditory organ. Like transduction, the hair cell’s electrical

response is linearized by maintaining a fraction of the cell’s ion

channels open at the resting potential. Transduction currents perturb

the membrane potential by opening or closing a fraction of these

channels. As described above for mechanical transduction,

nonlinearities may serve to place the system close to a point of

instability (a Hopf bifurcation), where amplification of small signals

is large (Ospeck et al., 2001; Jørgensen and Kroese, 2005), but the

response to small perturbations remains nearly linear. As with

transduction, the nonlinearity generates a small spontaneous

membrane potential oscillation, and a compressive nonlinearity for

larger stimuli.

Frequency selectivity of transmitter release at the afferent
synapse

The final stage of signal processing by hair cells takes place at

the afferent synapse, where glutamate is released onto afferent

terminals. Our understanding of the synaptic transfer function is

far from complete, particularly for small voltage perturbations

around the resting potential, but there is evidence for ongoing

transmitter release at the resting potential (Glowatzki and Fuchs,

2002; Keen and Hudspeth, 2006), as expected if the synapse is

biased to be active at rest. One recent study (Rutherford and

Roberts, 2006) suggests that afferent synaptic transmission in the

frog sacculus possesses an intrinsic ‘tuning’ mechanism that

accentuates transmitter release when the hair cell membrane

potential oscillates at ~50 Hz. Like other tuning mechanisms in

hair cells, it operates most effectively for small stimuli near the

resting potential.

Recent studies of auditory hair cells from mouse (Brandt et al.,

2005; Johnson et al., 2007), turtle (Schnee et al., 2005) and frog

(Keen and Hudspeth, 2006) have shown a nearly linear relationship

between Ca2+ influx and transmitter release, in contrast to the 3rd

or 4th power dependence of transmitter release on cytoplasmic Ca2+

that has been reported at most synapses. A detailed mechanistic

explanation will require more experimentation, but one possible

explanation is that a single open Ca2+ channel may provide all the

Ca2+ needed to trigger release of a nearby synaptic vesicle, perhaps

due to an unusually close spatial coupling of Ca2+ channels and

Ca2+ sensors for release (Brandt et al., 2005). The approximately

linear relationship between Ca2+ influx and transmitter release is

seen experimentally under conditions where the current through each

open Ca2+ channel is nearly constant. Transmitter release is thus

interpreted to reflect the number of open Ca2+ channels near sites

of exocytosis. It is also possible that the Ca2+ sensor that controls

synaptic exocytosis in auditory hair cells, which is reported to be

otoferlin (Roux et al., 2006), has a more linear dependence on

cytoplasmic Ca2+ than does synaptotagmin II, which controls

transmitter release at conventional synapses. In many types of hair

cells the resting transduction current depolarizes the membrane

potential to a level where many of the Ca2+ channels are open at

rest which, in conjunction with a linear relationship between the

number of open Ca2+ channels and transmitter release, is expected

to linearize the overall relationship between small forces applied to

the hair bundle and transmitter release.

Conclusion
Several converging lines of evidence suggest that hair cells attain

high sensitivity to small inputs at a preferred frequency by

operating approximately linearly, but close to instability, both at

the level of mechoelectrical transduction and in their resonant

electrical properties. In both cases, nonlinearities may serve to

reduce the gain when oscillations grow, thereby preventing the

system from falling into instability, and provide a compressive

nonlinearity that maintains a large operating range. These

mechanisms provide a resting level of activation of the transduction

channels as well as the ion channels responsible for electrical

resonance and transmitter release, ensuring that these systems

respond nearly linearly to small perturbations. Larger stimuli evoke

a compressive nonlinearity that greatly expands the dynamic range.

There is evidence (Martin and Hudspeth, 2001) that nonlinear hair

bundle responses appear only when the stimulus exceeds some

threshold. It is possible that hair cells are specialized to maintain

a linear response to very small stimuli to help the CNS extract

periodic signals from additive noise by averaging in time and

across inputs, and by other linear operations. For louder sounds,

where thermal noise is relatively unimportant, maximizing

dynamic range may be more important. Further work is needed

to understand how the results of this linear processing of small

sensory signals in hair cells are translated into a spike train in the

postsynaptic afferent axons, and whether the time-varying

probability of an afferent spike is linearly related to the time-

varying force applied to the hair bundle.
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