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Life is almost certainly the most complex and diverse
physical system in the universe, covering more than 27 orders
of magnitude in mass, from the molecules of the genetic code
and metabolic process up to whales and sequoias. Organisms
themselves span a mass range of over 21 orders of magnitude,
ranging from the smallest microbes (10–13·g) to the largest
mammals and plants (108·g). This vast range exceeds that of
the Earth’s mass relative to that of the galaxy (which is ‘only’
18 orders of magnitude) and is comparable to the mass of an
electron relative to that of a cat. Similarly, the metabolic
power required to support life over this immense range spans
more than 21 orders of magnitude. Despite this amazing
diversity and complexity, many of the most fundamental
biological processes manifest an extraordinary simplicity
when viewed as a function of size, regardless of the class or
taxonomic group being considered. Indeed, we shall argue
that mass, and to a lesser extent temperature, is the prime
determinant of variation in physiological behaviour when

different organisms are compared over many orders of
magnitude.

Scaling with size typically follows a simple power law
behaviour of the form:

Y = Y0Mb
b·, (1)

where Y is some observable biological quantity, Y0 is a
normalization constant, and Mb is the mass of the organism
(Calder, 1984; McMahon and Bonner, 1983; Niklas, 1994;
Peters, 1986; Schmidt-Nielsen, 1984). An additional
simplification is that the exponent, b, takes on a limited set of
values, which are typically simple multiples of 1/4. Among
the many variables that obey these simple quarter-power
allometric scaling laws are nearly all biological rates, times,
and dimensions; they include metabolic rate (b�3/4), lifespan
(b�1/4), growth rate (b�–1/4), heart rate (b�–1/4), DNA
nucleotide substitution rate (b�–1/4), lengths of aortas and
heights of trees (b�1/4), radii of aortas and tree trunks

The Journal of Experimental Biology 208, 1575-1592
Published by The Company of Biologists 2005
doi:10.1242/jeb.01589

Life is the most complex physical phenomenon in the
Universe, manifesting an extraordinary diversity of form
and function over an enormous scale from the largest
animals and plants to the smallest microbes and
subcellular units. Despite this many of its most
fundamental and complex phenomena scale with size in a
surprisingly simple fashion. For example, metabolic rate
scales as the 3/4-power of mass over 27 orders of
magnitude, from molecular and intracellular levels up to
the largest organisms. Similarly, time-scales (such as
lifespans and growth rates) and sizes (such as bacterial
genome lengths, tree heights and mitochondrial densities)
scale with exponents that are typically simple powers of
1/4. The universality and simplicity of these relationships
suggest that fundamental universal principles underly
much of the coarse-grained generic structure and
organisation of living systems. We have proposed a set of

principles based on the observation that almost all life is
sustained by hierarchical branching networks, which we
assume have invariant terminal units, are space-filling and
are optimised by the process of natural selection. We show
how these general constraints explain quarter power
scaling and lead to a quantitative, predictive theory
that captures many of the essential features of
diverse biological systems. Examples considered include
animal circulatory systems, plant vascular systems,
growth, mitochondrial densities, and the concept of a
universal molecular clock. Temperature considerations,
dimensionality and the role of invariants are discussed.
Criticisms and controversies associated with this approach
are also addressed.
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(b�3/8), cerebral gray matter (b�5/4), densities of
mitochondria, chloroplasts and ribosomes (b=–1/4), and
concentrations of ribosomal RNA and metabolic enzymes
(b�–1/4); for examples, see Figs·1–4. The best-known of these
scaling laws is for basal metabolic rate, which was first shown
by Kleiber (Brody, 1945; Kleiber, 1932, 1975) to scale
approximately as Mb

3/4 for mammals and birds (Fig.·1).
Subsequent researchers showed that whole-organism
metabolic rates also scale as Mb

3/4 in nearly all organisms,
including animals (endotherms and ectotherms, vertebrates and
invertebrates; Peters, 1986), plants (Niklas, 1994), and
unicellular microbes (see also Fig.·7). This simple 3/4 power
scaling has now been observed at intracellular levels from
isolated mammalian cells down through mitochondria to the
oxidase molecules of the respiratory complex, thereby
covering fully 27 orders of magnitude (Fig.·2; West et al.,
2002b). In the early 1980s, several independent investigators
(Calder, 1984; McMahon and Bonner, 1983; Peters, 1986;
Schmidt-Nielsen, 1984) compiled, analyzed and synthesized
the extensive literature on allometry, and unanimously
concluded that quarter-power exponents were a pervasive
feature of biological scaling across nearly all biological
variables and life-forms.

Another simple characteristic of these scaling laws is the
emergence of invariant quantities (Charnov, 1993). For
example, mammalian lifespan increases approximately as
Mb

1/4, whereas heart-rate decreases as Mb
–1/4, so the number of

heart-beats per lifetime is approximately invariant (~1.5�109),
independent of size. A related, and perhaps more fundamental,

invariance occurs at the molecular level, where the number of
turnovers of the respiratory complex in the lifetime of a
mammal is also essentially constant (~1016). Understanding the
origin of these dimensionless numbers should eventually lead
to important fundamental insights into the processes of aging
and mortality. Still another invariance occurs in ecology, where
population density decreases with individual body size as
Mb

–3/4 whereas individual power use increases as Mb
3/4, so the

energy used by all individuals in any size class is an invariant
(Enquist and Niklas, 2001).

It seems impossible that these ‘universal’ quarter-power
scaling laws and the invariant quantities associated with them
could be coincidental, independent phenomena, each a
‘special’ case reflecting its own unique independent dynamics
and organisation. Of course every individual organism,
biological species and ecological assemblage is unique,
reflecting differences in genetic make-up, ontogenetic
pathways, environmental conditions and evolutionary history.
So, in the absence of any additional physical constraints, one
might have expected that different organisms, or at least each
groups of related organisms inhabiting similar environments,
might exhibit different size-related patterns of variation in
structure and function. The fact that they do not – that the data
almost always closely approximate a power law, emblematic
of self-similarity, across a broad range of size and diversity –
raises challenging questions. The fact that the exponents of
these power laws are nearly always simple multiples of 1/4
poses an even greater challenge. It suggests the operation of
general underlying mechanisms that are independent of the

specific nature of individual organisms.
We argue that the very existence of such

ubiquitous power laws implies the existence
of powerful constraints at every level of
biological organization. The self-similar
power law scaling implies the existence of
average, idealized biological systems, which
represent a ‘0th order’ baseline or point of
departure for understanding the variation
among real biological systems. Real
organisms can be viewed as variations on, or
perturbations from, these idealized norms
due to influences of stochastic factors,
environmental conditions or evolutionary
histories. Comparing organisms over large
ranges of body size effectively averages over
environments and phylogenetic histories.
Sweeping comparisons, incorporating
organisms of different taxonomic and
functional groups and spanning many orders
of magnitude in body mass, reveal the more
universal features of life, lead to coarse-
grained descriptions, and motivate the search
for general, quantitative, predictive theories of
biological structures and dynamics.

Such an approach has been very successful
in other branches of science. For example,
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Fig.·1. Kleiber’s original 1932 plot of the basal metabolic rate of mammals and birds
(in kcal/day) plotted against mass (Mb in kg) on a log–log scale (Kleiber, 1975). The
slope of the best straight-line fit is 0.74, illustrating the scaling of metabolic rate as
Mb

3/4. The diameters of the circles represent his estimated errors of 10% in the data.
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classic kinetic theory is based on the idea that generic features
of gases, such as the ideal gas law, can be understood by
assuming atoms to be structureless ‘billiard balls’ undergoing
elastic collisions. Despite these simplifications, the theory
captures many essential features of gases and spectacularly
predicts many of their coarse-grained properties. The original
theory acted as a starting point for more sophisticated
treatments incorporating detailed structure, inelasticity,
quantum mechanical effects, etc, which allow more detailed
calculations. Other examples include the quark model of
elementary particles and the theories describing the evolution
of the universe from the big bang. This approach has also been
successful in biology, perhaps most notably in genetics. Again,
the original Mendelian theory made simplifying assumptions,
portraying each phenotypic trait as the expression of pairs of
particles, each derived from a different parent, which assorted
and combined at random in offspring. Nevertheless, this theory
captured enough of the coarse-grained essence of the
phenomena so that it not only provided the basis for the applied
sciences of human genetics and plant and animal breeding, but
also guided the successful search for the molecular genetic

code and supplied the mechanistic underpinnings for the
modern evolutionary synthesis. Although the shortcomings of
these theories are well-recognized, they quantitatively explain
an extraordinary body of data because they do indeed capture
much of the essential behavior.

Scaling as a manifestation of underlying dynamics has been
instrumental in gaining deeper insights into problems across
the entire spectrum of science and technology, because scaling
laws typically reflect underlying general features and
principles that are independent of detailed structure, dynamics
or other specific characteristics of the system, or of the
particular models used to describe it. So, a challenge in biology
is to understand the ubiquity of quarter-powers – to explain
them in terms of unifying principles that determine how life is
organized and the constraints under which it has evolved. Over
the immense spectrum of life the same chemical constituents
and reactions generate an enormous variety of forms,
functions, and dynamical behaviors. All life functions by
transforming energy from physical or chemical sources into
organic molecules that are metabolized to build, maintain and
reproduce complex, highly organized systems. We conjecture
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Fig.·2. Extension of Kleiber’s 3/4-power law for the metabolic rate of mammals to over 27 orders of magnitude from individuals (blue circles)
to uncoupled mammalian cells, mitochondria and terminal oxidase molecules, CcO of the respiratory complex, RC (red circles). Also shown
are data for unicellular organisms (green circles). In the region below the smallest mammal (the shrew), scaling is predicted to extrapolate
linearly to an isolated cell in vitro, as shown by the dotted line. The 3/4-power re-emerges at the cellular and intracellular levels. Figure taken
from West et al. (2002b) with permission.
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that metabolism and the consequent distribution of energy and
resources play a central, universal role in constraining the
structure and organization of all life at all scales, and that the
principles governing this are manifested in the pervasive
quarter-power scaling laws.

Within this paradigm, the precise value of the exponent,
whether it is exactly 3/4, for example, is less important than
the fact that it approximates such an ideal value over a
substantial range of mass, despite variation due to secondary
factors. Indeed, a quantitative theory for the dominant
behaviour (the 3/4 exponent, for example) provides
information about the residual variation that it cannot explain.
If a general theory with well-defined assumptions predicts 3/4
for average idealized organisms, then it is possible to erect and
test hypotheses about other factors, not included in the theory,
which may cause real organisms to deviate from this value. On
the other hand, without such a theory it is not possible to give
a specific meaning to any scaling exponent, but only to
describe the relationship statistically. This latter strategy has
usually been employed in analyzing allometric data and has
fueled controversy ever since Kleiber’s original study (Kleiber,
1932, 1975). Kleiber’s contemporary Brody independently
measured basal metabolic rates of birds and mammals,
obtained a statistically fitted exponent of 0.73, and simply took
this as the ‘true’ value (Brody, 1945). Subsequently a great
deal of ink has been spilled debating whether the exponent is
‘exactly’ 3/4. Although this controversy appeared to be settled
more than 20 years ago (Calder, 1984; McMahon and Bonner,
1983; Peters, 1986; Schmidt-Nielsen, 1984), it was recently
resurrected by several researchers (Dodds et al., 2001; Savage
et al., 2004b; White and Seymour, 2003).

A deep understanding of quarter-power scaling based on a
set of underlying principles can provide, in principle, a general
framework for making quantitative dynamical calculations of
many more detailed quantities beyond just the allometric
exponents of the phenomena under study. It can raise and
address many additional questions, such as: How many oxidase
molecules and mitochondria are there in an average cell and in
an entire organism? How many ribosomal RNA molecules?
Why do we stop growing and what adult weight do we attain?
Why do we live on the order of 100 years – and not a million
or a few weeks – and how is this related to molecular scales?
What are the flow rate, pulse rate, pressure and dimensions in
any vessel in the circulatory system of any mammal? Why do
we sleep eight hours a day, a mouse eighteen and an elephant
three? How many trees of a given size are there in a forest,
how far apart are they, how many leaves does each have and
how much energy flows in each or their branches? What are
the limits on the sizes of organisms with different body plans?

Basic principles
All organisms, from the smallest, simplest bacterium to the

largest plants and animals, depend for their maintenance and
reproduction on the close integration of numerous subunits:
molecules, organelles and cells. These components need to be

serviced in a relatively ‘democratic’ and efficient fashion to
supply metabolic substrates, remove waste products and
regulate activity. We conjecture that natural selection solved
this problem by evolving hierarchical fractal-like branching
networks, which distribute energy and materials between
macroscopic reservoirs and microscopic sites (West et al.,
1997). Examples include animal circulatory, respiratory, renal,
and neural systems, plant vascular systems, intracellular
networks, and the systems that supply food, water, power and
information to human societies. We have proposed that the
quarter-power allometric scaling laws and other features of the
dynamical behaviour of biological systems reflect the
constraints inherent in the generic properties of these networks.
These were postulated to be: (i) networks are space-filling in
order to service all local biologically active subunits; (ii) the
terminal units of the network are invariants; and (iii)
performance of the network is maximized by minimizing the
energy and other quantities required for resource distribution.

These properties of the ‘average idealised organism’ are
presumed to be consequences of natural selection. Thus, the
terminal units of the network where energy and resources are
exchanged (e.g. leaves, capillaries, cells, mitochondria or
chloroplasts), are not reconfigured or rescaled as individuals
grow from newborn to adult or as new species evolve. In an
analogous fashion, buildings are supplied by branching
networks that terminate in invariant terminal units, such as
electrical outlets or water faucets. The third postulate assumes
that the continuous feedback and fine-tuning implicit in natural
selection led to ‘optimized’ systems. For example, of the
infinitude of space-filling circulatory systems with invariant
terminal units that could have evolved, those that have survived
the process of natural selection, minimize cardiac output. Such
minimization principles are very powerful, because they lead to
‘equations of motion’ for network dynamics.

Using these basic postulates, which are quite general and
independent of the details of any particular system, we have
derived analytic models for mammalian circulatory and
respiratory systems (West et al., 1997) and plant vascular
systems (West et al., 1999b). The theory predicts scaling
relations for many structural and functional components of
these systems. These scaling laws have the characteristic
quarter-power exponents, even though the anatomy and
physiology of the pumps and plumbing are very different.
Furthermore, our models derive scaling laws that account for
observed variation between organisms (individuals and species
of varying size), within individual organisms (e.g. from aorta
to capillaries of a mammal or from trunk to leaves of a tree),
and during ontogeny (e.g. from a seedling to a giant sequoia).
The models can be used to understand the values not only for
allometric exponents, but also for normalization constants and
certain invariant quantities. The theory makes quantitative
predictions that are generally supported when relevant data are
available, and – when they are not – that stand as a priori
hypotheses to be tested by collection and analysis of new data
(Enquist et al., 1999; Savage et al., 2004a; West et al., 1997,
1999a,b, 2001, 2002a,b).
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Metabolic rate and the vascular network
Metabolic rate, the rate of transformation of energy and

materials within an organism, literally sets the pace of life.
Consequently it is central in determining the scale of biological
phenomena, including the sizes and dimensions of structures
and the rates and times of activities, at levels of organization
from molecules to ecosystems. Aerobic metabolism in
mammals is fueled by oxygen whose concentration in blood is
invariant, so cardiac output or blood volume flow rate through
the cardiovascular system is a proxy for metabolic rate. Thus,
characteristics of the circulatory network constrain the scaling
of metabolic rate. We shall show how the body-size dependence
for basal and field metabolic rates, B�Mb

3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk�lk3, so VS�Nkvk�Nklk3 for every level, k. Thus
lk+1/lk�n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α�(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0�(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be

(5)
co

2ρ
πr2c

,and Z ~
J2(i3/2α)
J0(i3/2α)

~ –
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entirely eliminated. It can be minimized, however, using the
classic method of Lagrange multipliers to enforce the
appropriate constraints (Marion and Thornton, 1988; West et
al., 1997). To sustain a given metabolic rate in an organism of
fixed mass with a given volume of blood, Vb, the cardiac output
must be minimized subject to a space-filling geometry. The
calculation shows that area-preserving branching is thereby
replaced by area-increasing branching in small vessels, so
blood slows down allowing efficient diffusion of oxygen from
the capillaries to the cells. Branching, therefore, changes
continuously down through the network, so that the ratio rk+1/rk

is not independent of k but changes continuously from n–1/2 at
the aorta to n–1/3 at the capillaries. Consequently, the network
is not strictly self-similar, but within each region (pulsatile in
large vessels and Poiseuille in small ones), self-similarity is a
reasonable approximation that is well supported by empirical
data (Caro et al., 1978; Fung, 1984; Zamir, 1999).

In order to derive allometric relations between animals of
different sizes we need to relate the scaling of vessel
dimensions within an organism to its body mass, Mb. A natural
vehicle for this is the total volume of blood in the network,
Vb, which can be shown to depend linearly on Mb if cardiac
output is minimized, i.e. Vb�Mb, in agreement with data (Caro
et al., 1978; Fung, 1984). This is straightforwardly given by
Vb=ΣNkVk=Σnkπrk

2lk, where Nk=nk is the number of vessels at
level k. Provided there are sufficiently large vessels in the
network with |α|>1 so that pulsatile flow dominates, the
leading-order behavior for the blood volume is Vb�n4N/3VN.
Conservation of blood requires that the flow rate in the aorta,
Q0= NNQN, where QN is the flow rate in a capillary and
NN�nN, the total number of capillaries. But Q0�B, the total
metabolic rate, so putting these together we obtain
B�(Vb/VN)3/4QN. However, capillaries are invariant units, so
VN and QN are both independent of Mb, whereas from
minimization of energy loss, Vb�Mb, so we immediately
obtain the seminal result B�Mb

3/4.
The allometric scaling of radii, lengths and many other

physiological characteristics, such as the flow, pulse and
dimensions in any branch of a mammal of any size, can be
derived from this whole-system model and shown to have
quarter-power exponents. Quantitative predictions for all these
characteristics of the cardiovascular system are in good
agreement with data (West et al., 1997). For example, even the
residual pulse wave component in capillaries is determined: it
is predicted to be attenuated to 0.1% with its velocity being
~10·cm·s–1, compared to ~580·cm·s–1 for the unattenuated
wave in the aorta, both numbers being invariant with respect
to body size.

To summarise: there are two independent contributions to
energy expenditure: viscous energy dissipation, which is
important only in smaller vessels, and energy reflected at
branch points, which is important only in larger vessels and is
eliminated by impedance matchings In large vessels (arteries),
pulse-waves suffer little attenuation or dissipation, and
impedance matching leads to area-preserving branching, such
that the cross-sectional area of daughter branches equals that

of the parent; so radii scale as rk+1/rk=n–1/2 with the blood
velocity remaining constant. In small vessels (capillaries and
arterioles) the pulse is strongly damped since Poiseuille flow
dominates and substantial energy is dissipated. Here
minimization of energy dissipation leads to area-increasing
branching with rk+1/rk=n–1/3, so blood slows down, almost
ceasing to flow in the capillaries. Consequently, the ratio of
vessel radii between adjacent levels, rk+1/rk, changes
continuously from n–1/2 to n–1/3 down through the network,
which is, therefore, not strictly self-similar. Nevertheless, since
the length ratio lk+1/lk remains constant throughout the network
because of space-filling, branch-lengths are self-similar and the
network has some fractal-like properties. Quarter-power
allometric relations then follow from the invariance of
capillaries and the prediction from energy optimization that
total blood volume scales linearly with body mass.

The dominance of pulsatile flow, and consequently of area-
preserving branching, is crucial for deriving power laws,
including the 3/4 exponent for metabolic rate, B. However, as
body size decreases, narrow tubes predominate and viscosity
plays an ever-increasing role. Eventually even the major
arteries would become too constricted to support wave
propagation, blood flow would become steady and branching
exclusively area-increasing, leading to a linear dependence on
mass. Since energy would be dissipated in all branches of the
network, the system is now highly inefficient; such an
impossibly small mammal would have a beating heart (with a
resting heart-rate in excess of approximately 1000·beats·min–1)
but no pulse! This provides a framework to estimate the
size of the smallest mammal in terms of fundamental
cardiovascular parameters. This gives a minimum mass
Mmin~1·g, close to that of a shrew, which is indeed the smallest
mammal (Fig.·3; West et al., 2002b). Furthermore, the
predicted linear extrapolation of B below this mass to the mass
of a single cell should, and does, give the correct value for the
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Fig.·3. Plot of heart rates (fH) of mammals at rest vs body mass Mb

(data taken from Brody, 1945). The regression lines are fitted to the
average of the logarithms for every 0.1 log unit interval of mass, but
both the average (squares) and raw data (bars) are shown in the plots.
The slope is –0.251 (P<0.0001, N=17, 95% CI: –0.221, –0.281),
which clearly includes –1/4 but excludes –1/3. Figure taken from
Savage et al. (2004b) with permission.
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metabolic rate of mammalian cells growing in culture isolated
from the vascular network (Fig.·2).

The derivation that gives the 3/4 exponent is only an
approximation, because of the changing roles of pulsatile and
Poiseuille flow with body size. Strictly speaking, the theory
predicts that the exponent for B is exactly 3/4 only where
pulsatile flow completely dominates. In general, the exponent
is predicted to depend weakly on M, manifesting significant
deviations from 3/4 only in small mammals, where only the
first few branches of the arterial system can support a pulse
wave (West et al., 1997, 2002b). Since small mammals
dissipate relatively more energy in their networks, they require
elevated metabolic rates to generate the increased energy
expenditure to circulate the blood. This leads to the prediction
that the allometric exponent for B should decrease below 3/4
as Mb decreases to the smallest mammal, as observed (Dodds
et al., 2001; Savage et al., 2004b).

If the total number of cells, Nc, increases linearly with Mb,
then both cellular metabolic rate, Bc(�B/Nc), and specific
metabolic rate, B/Mb, decrease as Mb

–1/4. In this sense,
therefore, larger animals are more efficient than smaller ones,
because they require less power to support unit body mass and
their cells do less work than smaller animals. In terms of our
theory this is because the total hydrodynamic resistance of the
network decreases with size as Mb

–3/4. This has a further
interesting consequence that, since the ‘current’ or volume rate
of flow of blood in the network, Q0, increases as Mb

3/4, whereas
the resistance decreases as Mb

–3/4, the analog to Ohm’s law
(pressure=current�resistance) predicts that blood pressure
must be an invariant, as observed (Caro et al., 1978; Fung,
1984). This may seem counterintuitive, since the radius of the
aorta varies from approximately 0.2·mm in a shrew up to
approximately 30·cm in a whale!

Scaling up the hierarchy: from molecules to mammals
At each organisational level within an organism, beginning

with molecules and continuing up through organelles, cells,
tissues and organs, new structures emerge, each with different

physical characteristics, functional parameters, and resource
and energy network systems, thereby constituting a hierarchy
of hierarchies. Metabolic energy is conserved as it flows
through this hierarchy of sequential networks. We assume that
each network operates subject to the same general principles
and therefore exhibits quarter-power scaling (West et al.,
2002b). From the molecules of the respiratory complex up to
intact cells, metabolic rate obeys 3/4-power scaling.
Continuity of flow imposes boundary conditions between
adjacent levels, leading to constraints on the densities of
invariant terminal units, such as respiratory complexes and
mitochondria, and on the networks of flows that connect
them (West et al., 2002b). The total mitochondrial mass
relative to body mass is correctly predicted to be
(Mminmm/mcMb)1/4�0.06Mb

–1/4, where mm is the mass of a
mitochondrion, Mmin is minimum mass, mc is average cell
mass and Mb is expressed in g. Since mitochondria are
assumed to be approximately invariant, the total number in the
body is determined in a similar fashion. This shows why there
are typically only a few hundred per human cell, whereas there
are several thousand in a shrew cell of the same type.

As already stressed, a central premise of the theory is that
general properties of supply networks constrain the coarse-
grained, and therefore the scaling properties, of biological
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systems. An immediate qualitative consequence of this
idea is that, if cells are liberated from the network
hegemony by culturing them in vitro, they are likely to
behave differently from cells in vivo. An alternative
possibility is that cellular metabolic rates are relatively
inflexible. This, however, would be a poor design,
because it would prevent facultative adjustment in
response to variation in body size over ontogeny and in
response to the varying metabolic demands of tissues.
If the metabolic rate and number of mitochondria per
cell are indeed tuned facultatively in response to
variations in supply and demand, the theory makes an
explicit quantitative prediction: cells isolated from
different mammals and cultured in vitro under
conditions of unlimited resource supply should
converge toward the same metabolic rate (predicted to be
~6�10–11·W), rather than scaling as M–1/4 as they do in vivo
(Fig.·5); cells in vitro should also converge toward identical
numbers of mitochondria, losing the M–1/4 scaling that they
exhibit in vivo. The in vivo and in vitro values are predicted to
coincide at Mmin, which we estimated above to be
approximately 1·g. So cells in shrews work at almost maximal
output, which, no doubt, is reflected in their high levels of
activity and the shortness of their lives. By contrast cells in
larger mammals are constrained by the properties of vascular
supply networks and normally work at lower rates.

All of these results depend only on generic network
properties, independent of details of anatomy and physiology,
including differences in the size, shape and number of
mitochondria among different tissues within a mammal. Since
quarter-power scaling is observed at intracellular, as well as
whole-organism and cellular levels, this suggests that
metabolic processes at subcellular levels are also constrained
by optimized space-filling, hierarchical networks, which have
similar properties to the more macroscopic ones. A major
challenge, both theoretically and experimentally, is to
understand quantitatively the mechanisms of intracellular
transport, about which surprisingly little is known.

Extensions
Ontogenetic growth

The theory developed above naturally leads to a general
growth equation applicable to all multicellular animals (West
et al., 2001, 2002a). Metabolic energy transported through the
network fuels cells where it is used either for maintenance,

including the replacement of cells, or for the production of
additional biomass and new cells. This can be expressed as:

where Nc is the total number of cells in the organism at time t
after birth and Ec the energy needed to create a new cell. Since
Nc=m/mc, where m is the ontogenetic mass and mc the average
cell mass, this leads to an equation for the growth rate of an
organism:

where B0 is the taxon-dependent normalization constant for the
scaling of metabolic rate: B�B0m3/4. The parameters of the
resulting growth equation are therefore determined solely by
fundamental properties of cells, such as their metabolic rates
and the energy required to produce new ones, which can be
measured independently of growth. The model gives a natural
explanation for why animals stop growing: the number of cells
supplied (Nc�m) scales faster than the number of supply units
(since B�NN�m3/4), and leads to an expression for the
asymptotic mass of the organism: Mb=(B0mc/Bc)4. Eq.·7 can be
solved analytically to determine m as a function of t, leading
to a classic sigmoidal growth curve. By appropriately rescaling
m and t as prescribed by the theory, the solution can be recast
as a universal scaling curve for growth. When rescaled in this
way, growth data from many different animals (including
endotherms and ectotherms, vertebrates and invertebrates) all

(7)m ,m3/4 –
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Fig.·6. The universality of growth is illustrated by plotting the
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a single universal curve; m is the mass of the organism at age
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determined by theory in terms of basic cellular properties that
can be measured independently of growth data. Figure taken
from West et al. (2001) with permission.
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closely fit a single universal curve (Fig.·6). Ontogenetic growth
is therefore a universal phenomenon determined by the
interaction of basic metabolic properties at cellular and whole-
organism levels. Furthermore, this model leads to scaling laws
for other growth characteristics, such as doubling times for
body mass and cell number, and the relative energy devoted to
production vs maintenance. Recently, Guiot et al. (2003)
applied this model to growth of solid tumors in rats and
humans. They showed that the growth curve derived from
Eq.·7 gave very good fits, even though the parameters they
used were derived from statistical fitting rather than determined
from first principles, as in ontogenetic growth. This is just one
example of the exciting potential applications of metabolic
scaling theory to important biomedical problems.

Temperature and universal biological clocks

Temperature has a powerful effect on all biological systems
because of the exponential sensitivity of the Boltzmann factor,
e–E/kT, which controls the temperature dependence of
biochemical reaction rates; here, E is a chemical activation
energy, T absolute temperature, and k Boltzmann’s constant.
Combined with network constraints that govern the fluxes of
energy and materials, this predicts a joint universal mass and
temperature scaling law for all rates and times connected
with metabolism, including growth, embryonic development,

longevity and DNA nucleotide substitution in genomes. All
such rates are predicted to scale as:

R � Mb
–1/4e–E/kT ·, (8)

and all times as:

t � Mb
1/4eE/kT ·. (9)

The critical points here are the separable multiplicative nature
of the mass and temperature dependences and the relatively
invariant value of E, reflecting the average activation energy
for the rate-limiting biochemical reactions (Gillooly et al.,
2001). Data covering a broad range of organisms (fish,
amphibians, aquatic insects and zooplankton) confirm these
predictions with E~0.65·eV (Fig.·7). These results suggest a
general definition of biological time that is approximately
invariant and common to all organisms: when adjusted for size
and temperature, determined by just two numbers (1/4 and
E~0.65·eV), all organisms to a good approximation run by the
same universal clock with similar metabolic, growth, and
evolutionary rates! (Gillooly et al., 2005).

Metabolic scaling in plants: independent evolution of M3/4

One of the most challenging facts about quarter-power
scaling relations is that they are observed in both animals and
plants. Our theory offers an explanation: both use fractal-like
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branching structures to distribute resources, so both obey the
same basic principles despite the large differences in anatomy
and physiology. For example, in marked contrast to the
mammalian circulatory system, plant vascular systems are
effectively fiber bundles of long micro-capillary tubes (xylem
and phloem), which transport resources from trunk to leaves,
driven by a non-pulsatile pump (Niklas, 1994). If the
microcapillary vessels were of uniform radius, as is often
assumed in models of plants, a serious paradox results: the
supply to the tallest branches, where most light is collected,
suffers the greatest resistance. This problem had to be
circumvented in order for the vertical architecture of higher
plants to have evolved. Furthermore, the branches that
distribute resources also contain substantial quantities of dead
wood which provide biomechanical support, so the model
must integrate classic bending moment equations with the
hydrodynamics of fluid flow in the active tubes.

Assuming a space-filling branching network geometry with
invariant terminal units (petioles or leaves) and minimization of
energy use as in the cardiovascular system, the theory predicts
that tubes must have just enough taper so that the hydrodynamic
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resistance of each tube is independent of path length. This
therefore ‘democratises’ all tubes in all branches, thereby
allowing a vertical architecture. As in the mammalian system,
many scaling relations can be derived both within and between
plants, and these make quantitative testable predictions for
metabolic rate (the 3/4 exponent), area-preserving branching,
xylem vessel tapering and conductivity, pressure gradients,
fluid velocity, and the relative amount of non-conducting wood
to provide biomechanical support (Figs·8, 9).

Of particular relevance here is the fact that these two systems,
in plants and mammals, which have evolved independently by
natural selection to solve the problem of efficient distribution
of resources from a central ‘trunk’ to terminal ‘capillaries’ and
which have such fundamentally different anatomical and
physiological features, nevertheless show identical Mb

3/4

scaling of whole-organism metabolic rate, and comparable
quarter-power scaling of many structures and functions. Our
model accurately predicts scaling exponents for 17 parameters
of trees (West et al., 1999b). These sets of comparable quarter-
power scaling laws reflect convergent solutions of trees and
mammals to the common problems of vascular network design
satisfying the same set of basic principles.

The fourth dimension

We have shown that power law scaling reflects generic
properties of energy and resource distribution networks: space-
filling, invariant terminal units and minimization of energy
expenditure are sufficient to determine scaling properties,
regardless of the detailed architecture of the network. For
example, area-preserving branching and the linearity of the
network volume with body mass both follow from optimising
the solution to the dynamical equations for network flow and
are sufficient to derive quarter-powers in both mammals and
plants. Nevertheless, one can ask why it is that exponents are
destined to be quarter-powers in all cases, rather than some
other power, and why should this be a universal behaviour
extending even to unicellular organisms with no obvious
branching network. Is there a more general argument,
independent of dynamics and hierarchical branching that
determines the ‘magic’ number 4? This question was addressed
by Banavar et al. (1999) who, following our work, also
assumed that allometric relations reflect network constraints.
They proposed that quarter-powers arise from a more general
class of directed networks that do not necessarily have fractal-
like hierarchical branching. They assumed that the network
volume scales linearly with body mass Mb and claimed on
general grounds that a lower bound on the overall network flow
rate scales as Mb

3/4. Although intriguing, the biological
significance of this result is unclear, not only because it is a
lower bound rather than an optimization, but more importantly,
because it was derived assuming that the flow is sequential
between the invariant terminal units being supplied (e.g. from
cell to cell, or from leaf to leaf) rather than hierarchically
terminating on such units, as in most real biological networks.
Whether their result can be generalized to general networks of
more relevance in biology is unclear.

A general argument (West et al., 1999a) can be motivated
from the observation that in d dimensions our derivations of
the metabolic exponent obtained from solving the dynamical
equations leads to d/(d+1), which in three dimensions reduces
to the canonical 3/4. Thus, the ubiquitous ‘4’ is actually the
dimensionality of space (‘3’) plus ‘1’. In our derivations this
can be traced partially to the space-filling constraint, which
typically leads to an increase in effective scaling
dimensionality (Mandelbrot, 1982). For example, the total area
of two-dimensional sheets filling three-dimensional washing
machines clearly scales like a volume rather than an area. In
this scaling sense, organisms effectively function as if in four
spatial dimensions. Natural selection has taken advantage of
the generalised fractality of space-filling networks to maximise
the effective network surface area, A, of the terminal units
interfacing with their resource environments. This can be
expressed heuristically in the following way: if terminal units
are invariant and the network space-filling, then metabolic rate,
B�A, which scales like a volume, rather than an area; that is,
B�A�L3 (rather than �L2), where L is some characteristic
length of the network, such as the length of the aorta in the
circulatory system of mammals or the length of the stem in
plants. However, the volume of the network, Vnet�AL�L4. So,
if we assume that Vnet�M (proven from energy minimisation
in our theory), we then obtain Vnet�M�L4. Thus, L�M1/4

leading to B�A�L3�M3/4. This therefore provides a
geometrical interpretation of the quarter-powers, and, in
particular, a geometrical ‘derivation’ of the 3/4 exponent for
basal metabolic rate (West et al., 1999a).

Criticisms and controversies
Since our original paper was published (West et al., 1997),

there have been several criticisms (Darveau et al., 2002; Dodds
et al., 2001; White and Seymour, 2003). Some of these revolve
around matters of fact and interpretation that still need to be
resolved – such as the scaling of maximal metabolic rates in
mammals or the precise value of the exponent. Others claim to
provide empirical information or theoretical calculations that
refute our models. We have not found any of these latter
criticisms convincing for two reasons. First, most of them rest
on single technical issues, for which there are at least equally
supportable alternative explanations, and some that are simply
incorrect. Furthermore, most of these have been concerned
solely with mammalian metabolic rate, so they fail to
appreciate that our theory offers a single parsimonious
explanation, rooted in basic principles of biology, physics and
geometry, for an enormous variety of empirical scaling
relations. None of the criticisms offer alternative models for
the complete design of vascular networks or for the Mb

3/4

scaling of whole-organism metabolic rate. Here, we address
some of the more salient issues.

Scaling of metabolic rate: is it 3/4, 2/3 or some other
number?

Some of the recent criticisms have centered around whether
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whole-organism metabolic rate really does scale as Mb
3/4

(Dodds et al., 2001; White and Seymour, 2003). Indeed,
Kleiber himself (Kleiber, 1932, 1975) and many others (Brody,
1945; Calder, 1984; McMahon and Bonner, 1983; Niklas,
1994; Peters, 1986; Schmidt-Nielsen, 1984) had expected that
basal mammalian metabolic rates (BMR) should scale as Mb

2/3,
reflecting the role of body surface area in heat dissipation.
Heusner (1982) presented a statistical analysis focusing on
intra-specific comparisons and suggested that the exponent was
indeed 2/3 rather than 3/4, indicative of a simple Euclidean
surface rule. The statistical argument was strongly countered
by Feldman and McMahon (1983), and by Bartels (1982), after
which the debate subsided and the ubiquity of quarter powers
was widely accepted (Calder, 1984; McMahon and Bonner,
1983; Peters, 1986; Schmidt-Nielsen, 1984). In his synthetic
book on biological scaling, Schmidt-Nielsen seemed to have
settled the argument when he declared that ‘the slope of the
metabolic regression line for mammals is 0.75 or very close to
it, and most definitely not 0.67’ (Schmidt-Nielsen, 1984).

Arguments that the scaling of whole-organism metabolic
rate is effectively a Euclidean surface phenomenon were
overshadowed by two lines of opposing evidence. First,
metabolic rates of many groups of ectothermic organisms,
whose body temperatures fluctuate closely with environmental
temperatures, so that control of heat dissipation is not an issue,
were also shown to scale as Mb

3/4. Second, extensive work on
temperature regulation in endotherms elucidated powerful
mechanisms for heat dissipation, in which body surface area
per se played an insignificant role (Schmidt-Nielsen, 1984).

Recently, however, this controversy was resurrected by
Dodds (2001) and by White and Seymour (2003), who
concluded that a reanalysis of data supported 2/3, especially
for smaller mammals (<10·kg). These and earlier authors
(Heusner, 1982) argued for an empirical exponent of 2/3 based
on their reanalyses of large data sets, using various criteria for
excluding certain taxa and data, and employing non-standard
statistical procedures. For every such example, however, it is
possible to generate a counter-example using at least equally
valid data and statistical methods (Bartels, 1982; Feldman and
McMahon, 1983; Savage et al., 2004b). Observed deviations
from perfect Mb

3/4 seems attributable to some combination of
elevated rates for the smallest mammals, as first observed
empirically by Calder (1984) and predicted theoretically by our
model (see above; West et al., 1997), and statistical artefacts
due to small errors in precisely estimating the characteristic
body masses of species. Ironically, one might argue that
deviations from the 3/4 exponent for small mammals is another
of the successful predictions of our theory.

More telling than repeated reanalyses of the largely
overlapping data on basal metabolic rates of mammals would
be a reanalysis of all of the multiple studies of scaling of
whole-organism metabolic rate in different groups of
organisms. Peters (1986) published such a meta-analysis of the
large number of studies available at the time of his synthetic
monograph. He obtained an approximately normal-shaped
frequency distribution of exponents, with a sharp peak at

almost exactly 3/4. Savage et al. (2004b) recently performed a
similar analysis, incorporating data from additional studies,
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and obtained virtually identical results: the mean value of the
exponent is 0.749±0.007, so the 95% confidence intervals
include 3/4 but exclude 2/3 (Fig.·10). This analysis was
extended to a variety of other rates and times leading to similar
results: the mean value of the exponent for mass-specific rates
was found to be –0.247±0.011 and for times, 0.250±0.011, so
both of these clearly exclude a 1/3 exponent. It is worth
emphasizing that these meta-analyses include studies of a wide
variety of processes in a broad range of taxa (including
ectotherms, invertebrates, and plants, as well as birds and
mammals) measured in a very large number of independent
studies by many different investigators working over more than
50 years. This kind of evidence had earlier led Calder (1984)
to conclude that ‘Despite shortcomings and criticisms
[including the lack of a theoretical model], empirically most
of the scaling does seem to fit M1/4 scaling.…..’, and Peters
(1986) to remark that ‘.…..one cannot but wonder why the
power formula, in general, and the mass exponents of 3/4, 1/4,
and –1/4, in particular, are so effective in describing biological
phenomena.’ We see no reason to change this assessment in
the light of the very few recent studies that have once again
argued for Mb

2/3 scaling.

Ours are whole-system models: how do other parameters
scale?

Many critics lose sight of the fact that our theory generates
a complete, whole-system model for the structure and function
of the mammalian arterial system as well as quantitatively
predicting many other unrelated biological phenomena. The
model quantifies the flow of blood from the heart to the
capillaries. It predicts the scaling exponents for 16 variables,
including blood volume, heart rate, stroke volume, blood
pressure, radius of the aorta, volume of tissue served by a
capillary, number and density of capillaries, dimensions of
capillaries and oxygen affinity of hemoglobin (Fig.·3; West et
al., 1997). No alternative whole-system model has been
developed that makes different predictions.

The most serious theoretical criticism, by Dodds et al.
(2001), took issue with our derivation of the 3/4 exponent for
mammals based on an analysis of the pulsatile circulatory
systems Their calculation, however, naively minimized the
total complex impedance of the network, which includes
analogs to capacitance and inductance effects not directly
associated with energy dissipation. This is a subtle, but
important, point. The meaningful, physical quantity associated
with energy dissipation due to viscous forces is the real part of
the impedance, and it is only this that must be minimized in
order to minimize the total energy dissipated. In addition, and
as already emphasized above, the total energy expended in a
pulsatile system is the sum of two contributions: the viscous
energy dissipated (determined from the real part of the
impedance) and the loss due to reflections at branch points.
Dodds et al. neglected, however, to consider this critical latter
effect and so failed to impose impedance matching, thereby
allowing arbitrary reflections at all branch points, so the total
energy expended is no longer minimised. Consequently, they

did not obtain area-preserving branching in large vessels nor,
therefore, a 3/4 exponent nor a realistic description of the flow.
Put simply, their criticism is invalid because they failed to
correctly minimize the total energy expended in the network.

For those who would have mammalian BMR scale as M2/3,
the onus is on them to explain the scaling of other components
of the metabolic resource supply systems In particular, they
need to explain why cardiac output and pulmonary exchange
also scale as M3/4 in mammals (Schmidt-Nielsen, 1984). Heart
rate (fH), stroke volume (VS), respiration rate (Rl) and tidal
volume (VT) can all be measured with at least as much
precision and standardization as metabolic rates It is well
established that fH�Rl�M–1/4, and VS�VT�M, so the cardiac
output, fH�VS, scales as M–1/4M=M3/4, and similarly for the
rate of respiratory ventilation, Rl VT, again scaling as M3/4. Of
course this is not surprising if metabolic rate scales as M3/4,
because the rate of respiratory gas exchange in the lungs and
the rate of blood flow from the heart with its contained oxygen
and fuel must match the rate of metabolism of the tissues.
There is, however, a serious unexplained inconsistency in the
quarter-power scalings of these components of the circulatory
and respiratory systems if metabolic rate scales as M2/3.

Supply and demand at the cellular level: why do the cells care
about the size of the body?

Darveau et al. (2002) and Suarez et al. (2004) criticized our
theory as being ‘flawed’ for implying that ‘there is a single
rate-limiting step or process that accounts for the b value in
equation (1)’ (i.e. the allometric exponent for metabolic rate).
As an alternative, they suggested a much more complicated,
multiple-causes, allometric cascade model, in which metabolic
rate is the sum of all ‘ATP-utilising processes’, Bi:B=ΣBi. This
sum simply represents overall conservation of energy, so it
must be correct if it is carried out consistently. Therefore, it
cannot be in conflict with our theory. Darveau et al.
incorporated many details of metabolic processes both at
whole-organism and at cellular–molecular levels in their sum:
from pulmonary capacity, alveolar ventilation and cardiac
output to Na+,K+-ATPase activity, protein synthesis and
capillary–mitochondria diffusion. All were added as if they
were independent and in parallel. However, many of these
processes are primarily in series, thereby leading to multiple-
counting and therefore to a violation of energy conservation.
Each Bi was assumed to scale allometrically as Bi=aiMbi so
B=aΣciMbi�aMb, where the ci(=ai/a) were identified with
conventional control coefficients defined as ‘the fractional
change in organismal flux divided by the fractional change in
capacity’ of the ith contributing process. As such, the ci are
dimensionless. Unfortunately, however, it is obvious that the
ci as used by Darveau et al. in the above equations cannot be
dimensionless since the bi that were used all have different
values. Consequently, their results are inconsistent and
incorrect (West et al., 2003).

Even without this fatal flaw, their model makes no a priori
predictions about the scaling of metabolic rate, since no
explanation is offered for the origin or values of the scaling
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exponents for the contributing processes, bi. If the sum is
carried out correctly, it simply verifies the conservation of
metabolic energy. From the Darveau et al. point of view the bi

are simply inputs; from ours, they are potentially outputs
determined from network constraints. It is surely no accident
that almost all of the bi cluster around 0.75.

Although we take issue with the characterization of our theory
as ‘single-cause’ – and point out that it predicts the scaling of
16 variables for the mammalian cardiovascular system in
addition to metabolic rate and, in addition, makes similar
predictions for plants – we regard its relative simplicity as a
strength rather than a weakness. We contend that for a given
metabolic state, scaling of metabolic rate between different-
sized organisms (that is, its relative value: M varying, but with
a and ai fixed) is indeed constrained by the network and this is
the origin of quarter-powers. However, the absolute rate of
resource flow and power output (given by a and ai) within an
individual organism (that is, with fixed M) is not rate-limited by
the network: as in any transport system, changes in supply and
demand cause the network flow to change accordingly. The
concept of an absolute ‘single-cause’ as used by Darveau et al.
simply does not arise. Because of this, our model deliberately
leaves out much of what is known about the biochemistry and
physiology of metabolism at cellular-molecular levels.

More generally, analytic models are typically deliberate
oversimplifications of more complex realities. They are
intended to ignore many details, to capture just the most
fundamental essence of a phenomenon, to provide a useful
conceptual framework, and to make robust testable predictions.
To make an analogy, the basic theory of Mendelian genetics
still provides the conceptual foundation for most of modern
population and evolutionary genetics, even though it does not
incorporate much of what is known about genetics at the
cellular (chromosomal) and molecular level. Indeed, for at least
a century Mendel’s laws have helped to guide the research into
the structure and function of the genetic material. Mendel’s
laws ignore linkage, epistasis and crossing over, not to mention
such features of genomic architecture as regulatory regions,
introns and transposons. They can now be amended or
extended to account for these phenomena if and when it is
important to incorporate such details into a conceptual
framework or an empirical analysis.

We therefore find it surprising that certain features of
metabolic processes at molecular and cellular levels (Darveau
et al., 2002) are viewed as irreconcilable alternatives to
our model. We view them as generally consistent and
complementary. So, for example, cellular–molecular processes
related to BMR generally scale close to M3/4 (but with higher
exponents for some processes linked more directly to maximal
metabolic rate (Weibel et al., 2004). This is used as input to
the ‘allometric cascade model’ of Darveau et al. (2002), who
claim that the M3/4 scaling of metabolic rate is determined by
demand-generated processes at the cellular–molecular level
rather than by supply-generated processes at the whole-
organism level. We fail to see the logic of this argument, which
makes an explicit distinction between supply- and demand-

driven processes. We conjecture that metabolic systems at the
molecular, organelle and cellular levels, and the circulatory,
respiratory, and other network systems that supply metabolic
requirements at the whole-organism level, are co-adjusted and
co-evolved so as to match supply to demand and vice versa.
More importantly, if whole-organism metabolic rate is
determined entirely by cellular and molecular processes, why
should it scale at all and why should it scale as M3/4? The
simplest design would be to make the cells and molecules in
mammals of different sizes identical building blocks so that
cellular metabolic performance is invariant. Whole-organism
metabolic rate would then simply be the sum of the rates of all
the identical cells, and so would scale linearly with mass. Our
theory shows, however, that the constraints on blood volume,
cardiac output, etc resulting from generic properties of network
design naturally lead to M3/4 scaling. But given this scaling of
whole-organism metabolic rate, it is completely consistent –
indeed it is predicted by our theory – that in vivo the cellular
and molecular processes of metabolism also scale as M3/4

(West et al., 2002b).
Although we disagree with the dichotomous supply- and

demand-driven views of metabolic regulation, our model does
make predictions about the consequences of altering the
relationship between the cells that perform the work of
metabolism and the vascular networks that supply the
resources. Specifically, it predicts that since the cellular
metabolic rates of large mammals are downregulated to obey
the constraints of reduced resource supply, their rates should
increase and converge on the cellular rates of small mammals
when they are grown in culture with abundant resources. This
is indeed observed (Fig.·5). Metabolic rates of cells derived
from different species and body sizes of mammals converge to
near maximal rates after being grown for multiple generations
in tissue culture under conditions of abundant resource supply
(West et al., 2002b). A complementary result consistent with
this is reported by Else et al. (2004), who found that when
avian liver cells were disassociated and maintained in culture
for short periods, the allometric exponent decreased: from
approximately –1/3 in vivo (the exact value is complicated by
the fact that the study used both passerine and non-passerine
birds, which likely have different normalization constants) to
approximately –0.1 in vitro. Although Else et al. state that this
result ‘undoubtedly supports the allometric cascade model,’ it
ironically is exactly what would be expected in our theory if
the cells have only partially compensated for isolation from the
vascular supply network, because they had been maintained in
culture without division for only a few hours. We conjecture
that, if they had been cultured for many days and had the
opportunity to divide and adjust the numbers of mitochondria,
the exponent would continue to decrease and eventually
asymptote near zero.

Scaling of other biological rates and times: are quarter
powers universal?

Nearly all biological rates scale as M–1/4, although these vary
from milliseconds for twitch frequencies of skeletal muscle
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to decades for periods of population cycles (Calder, 1984;
Lindstedt and Calder, 1981). Similarly, biological times tend
to scale as M1/4, although these again vary from milliseconds
for turnover times of ATP to decades for lifespans of
individuals. Recently, we (Savage et al., 2004b) collected data
and performed a meta-analysis of many of these rates and
times. The results were very clear: average exponents for rates
and times showed clear peaks very close to 1/4 and –1/4,
respectively, and the 95% confidence intervals excluded the
values of –1/3 and 1/3 that would be predicted on the basis of
Euclidean geometric scaling (Fig.·10). So, the scaling of these
many other attributes contributes to a synthetic body of
evidence providing overwhelming support for quarter-power
allometric scaling. This is a pervasive feature of biology across
an enormous range of mass, time and space.

Our recent work has involved extensions of metabolic theory
to explain scaling of other attributes of biological structure
and function at the levels of individuals, populations and
ecosystems. Beyond ontogenetic growth and development of
individuals discussed above (Gillooly et al., 2001; West et al.,
2002a), these have focused on individual-level production of
biomass in animals and plants (Gillooly et al., 2001, 2002),
population growth rates and related life history attributes
(Savage et al., 2004a), rates of carbon flux and storage and flux
in ecosystems (Allen et al., 2005), and rates of molecular
evolution (Gillooly et al., 2005).

BMR, FMR and VO∑max: what is optimized by natural
selection?

Most of the historical and recent discussion about the
allometric scaling of metabolic rate, especially when applied
to mammals, has focused on basal metabolic rate (BMR). BMR
is used as a standardized measure of physiological performance
because it can be rigorously defined and quite accurately
measured as the metabolic rate of a resting, fasting, post-
absorbtive mammal within its thermoneutral zone. However,
since the animal is not in an energetic steady-state, let alone at
a normal level of activity, BMR is of questionable biological
significance.

Of much more biological relevance is the field metabolic
rate (FMR), which is the rate of energy expenditure of an
animal during ‘normal’ activity in nature (Nagy et al., 1999).
This immediately raises the question of standardization. What
does normal activity mean? FMR is typically determined using
doubly-labeled water or a similar technique to obtain an
integrated measure of metabolic rate over a period of several
days. So it includes the costs of locomotion, grooming,
foraging and other ‘maintenance’ activities, but usually not the
greater costs of reproduction or of thermoregulation to
counteract severe cold or heat stress, and not the energetic
savings accrued by entering hibernation, aestivation or torpor.
Natural selection has presumably operated to maximize the
performance of the mammalian metabolic processes – and of
the cardiovascular system that supplies resources for
metabolism – over the entire life history, thereby incorporating
the costs of reproduction, thermoregulation, hibernation,

migration, and other such activities throughout an annual cycle.
There are few studies on such a scale, however, so FMRs
probably provide the most relevant measures of metabolic
performance.

Some physiologists (Taylor et al., 1988; Weibel et al., 2004,
1991) have emphasized the maximal sustained aerobic
metabolic rate (MMR) or VO∑max. Such levels of performance
are typically measured in non-volant mammals as rates of
energy utilization or oxygen consumption while running at
high speed. They are undoubtedly of great adaptive
significance, especially during predator avoidance, prey
capture and reproductive activity. There are, however, some
problems of standardization. One concerns how long and at
what speed the mammals are run. Since both maximal speed
and endurance scale positively with body size (Calder, 1984;
Schmidt-Nielsen, 1984), there is the issue of how this should
be incorporated into experimental protocols. Additionally,
there is substantial variation in performance among species,
even those of the same body size. ‘Athletic’ mammals such
as cheetahs, dogs, horses, antelopes and hares, which have
evolved to run at high speeds, have several-fold higher VO∑max

and factorial aerobic scope than ‘sedentary’ species of similar
size.

Nevertheless, we are convinced, especially by the recent
work of Weibel et al. (2004), that the athletic species define an
upper boundary for the scaling of VO∑max, which has an
exponent significantly greater than 3/4 and perhaps even
approaching 1. We are quick to point out, however, that while
this raises important questions, it does not invalidate our
theory. There are several issues. First, the high metabolic rates
of these athletic mammals are still supplied by the
hierarchically branching arterial network, so many of the
principles embodied in our model must still apply. Second,
there is a reallocation of blood flow during exercise. Heart rate
increases and blood flow is shunted to the metabolically active
tissues, chiefly cardiac and skeletal muscle, to supply the
increased oxygen demand. But since total blood volume
remains virtually unchanged, blood is diverted from other
tissues, such as digestive organs, and they are temporarily
oxygen-deprived. Third, it is unlikely that the steep scaling of
MMR can hold over the entire mammalian size range,
including the great whales. Simple extrapolation of two
allometric relationships, one with an exponent of 3/4 for BMR
and FMR, and the other with a much higher exponent for
MMR, would require a very large factorial aerobic scope and
prevent any of the largest mammals from being athletic.

Lastly, our theory predicts that the allometric exponent
should change between BMR and MMR because of the
sensitivity of impedance matching to heart beat frequency.
Recall that an important ingredient to our derivation of the 3/4
was that reflections be eliminated at branch junctions, leading
to area-preserving branching. However, all the important
physiological variables, including heart-rate, are ‘tuned’ to
body size. If heart rate is increased because of increased
activity, but the dimensions of the large vessels are kept fixed,
there is a mis-match and reflections result. We speculate that

THE JOURNAL OF EXPERIMENTAL BIOLOGY



1590

while the scalings of BMR and FMR reflect minimization of
energy loss (thereby requiring impedance matching), scaling
of MMR reflects maximization of power output, which is
achieved by several changes in the cardiovascular system,
including giving up impedance matching. Such an effect would
indeed drive the exponent larger, but it is difficult to calculate
the exact value without a formal model.

We suggest that what is needed is an effort to model the
performance of the cardiovascular and skeleton–muscular
systems of athletic mammals performing under standardized
conditions of VO∑max. Such a model would retain many features
of our model for the arterial system, but would also incorporate
what is known about changes in heart rate, blood flow and
tissue metabolism. To the extent that not all of the data desired
may be available, such a model would help to motivate
empirical studies by comparative physiologists to better
understand how the mammalian cardiovascular system adjusts
dynamically to the shifting demands imposed by different
levels of activity. Some features of our original model may
need to be changed. For example, natural selection has likely
maximized blood flow to certain tissues so as to maximize
power output for speed or endurance rather than to minimize
expenditure of energy within the arterial network.
Nevertheless, such a whole-system model would demand basic
constraints, such as conservation of blood volume within the
network and sufficient oxygen supply to meet aerobic
metabolic demand. Ultimately this could lead to a complete
model that would quantitatively predict the scaling exponents
and normalizations for many relevant parameters of the
system, including how they deviate from quarter-powers in the
active state.

Concluding remarks
We are very much aware that the philosophy of our

theoretical research program on biological scaling runs counter
to recent trends in comparative and mammalian physiology.
Although not a major theme of current research, analytical
mathematical models and general theory based on first
principles have in the past played an important role in
physiology. As examples, we cite applications of
thermodynamics to body temperature regulation (Scholander
et al., 1950), electrical and chemical potentials to nerve
conduction (Hodgkin and Huxley, 1952), countercurrent
exchange principles to thermoregulation (Scholander and
Schevill, 1955), aerodynamic theory to flying animals
(Greenwalt, 1975), and hydrodynamic principles to aquatic
organisms (Vogel, 1981).

Recently, however, most research programs have had a
strong empirical emphasis. They have sought to explain
variation in performance of organisms from different
environments and phylogenetic lineages in terms of details of
structure and function at cellular and molecular levels. They
have accumulated and organized a vast store of information. A
powerful theme in basic and comparative physiology has been
to understand the molecular basis, including characterizing

enzyme kinetics and identifying genes, for variation in whole-
organism function. This trend mirrors similar reductionist
themes in many branches of science, from atomic physics to
human psychology, during the last few decades.

While we recognize the scientific merit and importance of
this approach, we also believe that general theory and
mathematical models can play an important role. Sciences
typically cycle between periods of empiricism and theory,
reductionism and holism. Empirical advances are typically
unified and synthesized by theoretical contributions that use
basic principles and idealized, simplified models to obtain
generalized insights. Reductionist studies that discover
components and processes at microscopic levels are given
additional meaning by holistic studies that show how these
phenomena contribute to structure and function of large,
complex systems at higher levels of organization. Theoretical
and empirical, reductionist and holistic studies are typically
conducted by different individuals, motivated by different
questions and predilections. Both are equally necessary for
scientific progress.

We believe that new theories of biology can play a major
role in synthesizing recent empirical advances and elucidating
universal features of life. We see the prospects for the
emergence of a general theory of metabolism that will play a
role in biology similar to the theory of genetics. Genetic theory
is increasingly successful in explaining the development of the
phenotype and the dynamics of evolutionary change in terms
of the heritable traits of individual organisms, and in
understanding how those individual-level traits are coded and
regulated by the molecular structure and function of the
genome. Genetic theory is successful in part because there is
a universal molecular genetic code. The code operates
according to certain basic principles of structure and function
to direct the ontogeny and determine the phenotype of
individual organisms, and these individuals live, die, and leave
offspring according to additional rules of population genetics
and ecology to determine the evolutionary dynamics of
populations and lineages.

Similarly, all organisms share a common structural and
functional basis of metabolism at the molecular level. The
basic enzymes and reactions are universal, at least across the
aerobic eukaryotes. Additional general rules based on first
principles determine how this molecular-level metabolism is
supplied and regulated at higher levels of organization: from
organelles, to cells, to organisms, to ecosystems. The most
important of these rules are those relating to the size of the
systems, including the body size of the individual organisms,
and the temperature at which they operate. Our theory of
quarter-power scaling offers a unified conceptual explanation,
based on first principles of geometry, biology, physics and
chemistry for the size-dependence of the metabolic process.
The theory is based on generic properties of the metabolic
distribution networks in simplified, idealized organisms. It
provides a 0th order quantitative explanation for many
observed phenomena at all of the hierarchical levels of
organization.

G. B. West and J. H. Brown
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Quarter-power scaling theory is not the only ingredient of a
general theory of metabolisms Thermodynamics and, in
particular, temperature are clearly another critical ingredient.
As already emphasised, quarter-power allometry and simple
Boltzmann kinetics together account for the body size and
temperature dependence of metabolic rates and other related
biological structures, rates, and times across all levels of
organization from molecules to ecosystems (Gillooly et al.,
2001, 2002; Savage et al., 2004a). For example, these two basic
components of metabolic theory account for more than 99% of
the variation in rates of whole-organism biomass production
across an enormous diversity of organisms spanning 16 orders
of magnitude in body mass from unicellular algae and protists
to trees and mammals (Ernest et al., 2003).

There is much work still to be done, but we look forward to
the development of universal theories of biology that integrate
across levels of organization from molecules to populations
and ecosystems and across the diverse taxonomic and
functional groups of organisms. Such theories will incorporate
recent empirical discoveries, especially the recent advances at
cellular to molecular levels of organization. Ultimately they
may provide for biology the kinds of unifying conceptual
frameworks, based on first principles and expressed
quantitatively in the language of mathematics, that similar
theories do for physics and chemistry. This is a bold but
exciting vision for the 21st Century, which many are calling the
Century of Biology.
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