Recently, we identified yeast Erv1p (Lee et al., 2000) and mammalian augmenter of liver regeneration (ALR) as FAD-linked sulphydryl oxidases belonging to the new Erv1p/ALR protein family (Gerber et al., 2001; Lisowsky et al., 2001). These enzymes use FAD, O₂ and an internal redox-active cysteine pair to generate disulphide bridges in protein substrates (Hoober and Thorpe, 1999). The general importance of sulphydryl oxidases in cellular development is indicated by the finding that, during evolution, the sulphydryl oxidase fragment of the yeast ERV1 prototype was fused to thioredoxin/disulphide isomerase domains, thereby creating a new class of diverse growth factors forming the sulphydryl oxidase/quiescin Q6 family (Coppock et al., 1998; Hoober et al., 1999a,b; Senkevich et al., 2000).

Previous studies have demonstrated that different forms of Alrp may have different cellular functions. After partial hepatectomy, a 15 kDa Alrp fragment accumulates in the cytosol and serum of regenerating liver (Francavilla et al., 1994; Giorda et al., 1996; Hagiya et al., 1994; Wang et al., 1999). Accumulation of this 15 kDa carboxyl-terminal fragment, which still retains the enzymatic activity of a sulphydryl oxidase (Lisowsky et al., 2001), correlates with a reduction in interferon-gamma levels, a reduction in the lytic activity of natural killer cells and an increase in levels of mitochondrial transcription factor A (TFAM) (Polimeno et al., 2000a,b). Overexpression of TFAM results in the production of greater amounts of proteins for the respiratory chain and, thereby, increases the oxidative phosphorylation capacity of mitochondria (Polimeno et al., 2000b), but the functional correlation between the expression of the 15 kDa Alrp fragment and the process of liver regeneration remains unclear.

So far, studies on mammalian Alrp have been dominated by its specific role as an extracellular factor in liver regeneration (Francavilla et al., 1994; Gandhi et al., 1999; Wang et al., 1999). We know that, under normal conditions, the vast majority of Alrp is located inside cells and that Alrp expression is not restricted to liver tissue (Hofhaus et al., 1999; Lange et al., 2001). Our latest studies identified Alrp as a ubiquitous eukaryotic protein (Hofhaus et al., 1999; Lange et al., 2001; Lisowsky et al., 2001; Polimeno et al., 1999). Under normal conditions, the full-length 23 kDa mammalian Alrp is predominant and localized in the mitochondrial intermembrane space. In this compartment, Alrp performs an essential function in the biogenesis of cytosolic iron/sulphur cluster (Fe/S) proteins.

In this study, we investigated the expression of the mammalian FAD-dependent sulphydryl oxidase Erv1p/Alrp in the rat and mouse and during mouse spermatogenesis. Up to three forms of Alrp were identified in protein extracts from different tissues and organs, but very little enzyme was present in blood samples. The three forms of Alrp represent the full-length protein of 23kDa and fragments of 21 kDa and 15 kDa. All forms of Alrp were assembled into dimers in vivo. In contrast to samples from other organs, the protein analysis of mouse testis identified predominantly full-length 23kDa Alrp. This finding prompted us to investigate in more detail the expression of Alrp during spermatogenesis. Testis samples of individual mice from postnatal days 13–29 were probed with an antibody specific for mammalian Alrp. In addition, cells from whole testis preparations were fractionated on a bovine serum albumin column gradient. Protein expression of mouse Alrp was compared with those of testis-specific cyritestin, the cytoskeleton marker actin and mitochondrial subunit Vb of cytochrome oxidase and cytochrome c. These studies demonstrated a specific accumulation of full-length mouse Alrp during the early stages of spermatogenesis. The highest levels of Alrp were found in spermatogonia and primary spermatocytes. Levels of expression of Alrp did not correlate with the synthesis of components of the respiratory chain, indicating that full-length Alrp in the mitochondria of spermatogonia and spermatocytes has another function in addition to its role in oxidative phosphorylation.

Key words: rat, mouse, sulphydryl oxidase, Erv1p/Alrp, spermatogenesis, mitochondria, iron/sulphur cluster.

Introduction

Recently, we identified yeast Erv1p (Lee et al., 2000) and mammalian augmenter of liver regeneration (ALR) as FAD-linked sulphhydryl oxidases belonging to the new Erv1p/ALR protein family (Gerber et al., 2001; Lisowsky et al., 2001). These enzymes use FAD, O₂ and an internal redox-active cysteine pair to generate disulphide bridges in protein substrates (Hoober and Thorpe, 1999). The general importance of sulphhydryl oxidases in cellular development is indicated by the finding that, during evolution, the sulphhydryl oxidase fragment of the yeast ERV1 prototype was fused to thioredoxin/disulphide isomerase domains, thereby creating a new class of diverse growth factors forming the sulphhydryl oxidase/quiescin Q6 family (Coppock et al., 1998; Hoober et al., 1999a,b; Senkevich et al., 2000).

In this study, we investigated the expression of the mammalian FAD-dependent sulphydryl oxidase Erv1p/Alrp in the rat and mouse and during mouse spermatogenesis. Up to three forms of Alrp were identified in protein extracts from different tissues and organs, but very little enzyme was present in blood samples. The three forms of Alrp represent the full-length protein of 23kDa and fragments of 21 kDa and 15 kDa. All forms of Alrp were assembled into dimers in vivo. In contrast to samples from other organs, the protein analysis of mouse testis identified predominantly full-length 23kDa Alrp. This finding prompted us to investigate in more detail the expression of Alrp during spermatogenesis. Testis samples of individual mice from postnatal days 13–29 were probed with an antibody specific for mammalian Alrp. In addition, cells from whole testis preparations were fractionated on a bovine serum albumin column gradient. Protein expression of mouse Alrp was compared with those of testis-specific cyritestin, the cytoskeleton marker actin and mitochondrial subunit Vb of cytochrome oxidase and cytochrome c. These studies demonstrated a specific accumulation of full-length mouse Alrp during the early stages of spermatogenesis. The highest levels of Alrp were found in spermatogonia and primary spermatocytes. Levels of expression of Alrp did not correlate with the synthesis of components of the respiratory chain, indicating that full-length Alrp in the mitochondria of spermatogonia and spermatocytes has another function in addition to its role in oxidative phosphorylation.

Key words: rat, mouse, sulphydryl oxidase, Erv1p/Alrp, spermatogenesis, mitochondria, iron/sulphur cluster.
and is important for cellular iron homeostasis (Lange et al., 2001). Therefore, participation in the assembly of cytosolic Fe/S proteins appears to be the primary essential task of mitochondrial full-length Alrp (Lange et al., 2001). This function is crucial for all eukaryotic cell types, whereas the proposed role of 15 kDa Alrp as a hepatotrophic growth factor is restricted to liver cells, and it may be effective only after cell damage. This indicates that Alrp, like other redox-active proteins and sulphhydryl oxidases (Chivers et al., 1997; Kobayashi and Ito, 1999; Nakamura et al., 1997; Tanaka et al., 1997), may have diverse functions in the regulation of cell growth and differentiation (Francavilla et al., 1994; Gandhi et al., 1999; Li et al., 2000; Polimeno et al., 1999; Wang et al., 1999).

A consequence of these new data is the necessity to extend studies on mammalian Alrp to different tissues, organs and developmental processes. The finding that Alrp messenger RNA is synthesized in large amounts in the testis (Giorda et al., 1996; Hagiya et al., 1994) turned our attention to spermatogenesis. In addition, biochemical and immunohistochemical studies had indicated the important role of other sulphhydryl oxidases for testicular differentiation processes (Benayoun et al., 2001; Meinhardt et al., 1999; Oehmen et al., 1992). Possible functions of sulphhydryl oxidases and other redox-active proteins in growth regulation, differentiation, changes in mitochondrial and cellular membrane morphology and in the formation of the extracellular matrix have already been proposed (Benayoun et al., 2001; Coppock et al., 1998; Hoober et al., 1999b; Hoober and Thorpe, 1999; Lee et al., 2000; Lisowsky, 2001; Lisowsky et al., 2001; Meinhardt et al., 1999; Nakamura et al., 1997).

For our molecular analyses, a major breakthrough was the recent isolation and sequencing of rat seminal vesicle FAD-dependent sulphhydryl oxidase (Benayoun et al., 2001). The derived protein sequence identified the rat enzyme as highly homologous to human and chicken Q6 sulphhydryl oxidases. In fact, it appears plausible that rat seminal vesicle FAD-dependent sulphhydryl oxidase is synthesized from an alternative splicing product of the Q6 messenger RNA (Benayoun et al., 2001). Human Q6 and rat seminal vesicle FAD-linked enzymes are clearly distinct from the Erv1p/Alrp sulphhydryl oxidases. The Q6-related enzymes are monomeric proteins larger than 60 kDa that are excreted from cells (Benayoun et al., 2001; Coppock et al., 1998). In contrast, Erv1p/Alrp are small proteins of approximately 20 kDa that form dimers normally localized in the mitochondrial intermembrane space (Lee et al., 2000; Lange et al., 2001). Weak sequence homologies between Q6 and Erv1p/Alrp are restricted to the common ERV1 prototype domain harbouring the redox-active centre of these enzymes. This domain of approximately 100 amino acid residues contains the CXXC motif essential for disulphide bridge formation activity (Hoober and Thorpe, 1999; Lee et al., 2000; Lisowsky et al., 2001).

Mitochondrial localization of full-length Alrp is of special interest for spermatogenesis because it is known that morphological and functional changes in mitochondria are associated with this highly complex cytodiifferentiation process (Meinhardt et al., 1999; Russell et al., 1990). This was another important reason for investigating the expression of Alrp during mouse spermatogenesis. Full-length Alrp is identified as a new intratesticular sulphhydryl oxidase that clearly exhibits a regulated expression pattern and subcellular localization distinct from those of the Q6-related enzymes. Furthermore, our studies indicate a new function for mitochondria in the biogenesis of mature sperm cells.

Materials and methods

Tissue and cell preparations

Animals were provided by the animal research facility of the University of Düsseldorf. Organ and blood samples were prepared from male Wistar rats. For gradient probes, adult male C57BL/6J mice were killed by cervical dislocation. Testicles and epididymides were separately dissected and rinsed in Sorensen phosphate buffer. Mature sperm cells were isolated from the epididymis, and spermats were released from the seminiferous tubules after cutting them into smaller pieces.

For the analysis of the testis at defined time points after birth, the mouse strain CD1 was used.

Isolation of the testis, separation of cells and fractionation on a 1 % to 3 % bovine serum albumin (BSA) gradient were essentially performed as described previously (Wolgemuth et al., 1985) using a CelSep gradient chamber (DuPont). Samples of the cell fractions were stained with 2 % Toluidine Blue and inspected by oil immersion microscopy to characterize the cell types. Fractions containing predominantly the same cell type were pooled: 80–90 % of the cell population in the pooled fractions was made up of just one cell type.

Antibodies

To raise antibodies in rabbits against human Alrp, a purified hexahistidiny-tagged carboxyl-terminal fragment of Alrp (residues 81–205) was used (Lange et al., 2001; Lisowsky et al., 2001). Antibodies against mouse cyritestin (Chemicon), actin (Oncogene) and mitochondrial subunit Vb of cytochrome oxidase (CoxVb) (Molecular Probes) were purchased from the indicated suppliers or used as described previously (Linder et al., 1995). Cy3 and Cy5 fluorescent secondary antibodies were kindly supplied by Dr H. A.-J. Müller, Düsseldorf, Germany.

Western blotting

For immunological studies, samples containing approximately 20 μg of total protein were applied to 4 % to 12 % SDS/polyacrylamide gels (Novex/Invitrogen). One exception was the separation and identification of cyritestin. For western blot analysis of this protein, it was essential to use conventional 10 % polyacrylamide gels according to Laemmli (1970). Most of the primary antibodies were detected using alkaline-phosphatase-conjugated secondary antibodies and chemiluminescence. Cyritestin was identified using peroxidase-conjugated secondary antibodies and staining.
For alkaline-phosphatase-aided detection of Erv1p, tissues were fixed in paraformaldehyde or ethanol/acetic acid and embedded in Paraplast as described by Heinlein et al. (1994). Sections (6 μm) were mounted on SuperFrost slides and dewaxed through xylene and descending alcohol concentrations, washed in 10 mmol l⁻¹ phosphate buffer, 0.27 mmol l⁻¹ KCl, 140 mmol l⁻¹ NaCl, 0.05 % Tween-20 (PTw) and incubated for 10 min in PTw containing 2 % normal goat serum (PTwG). Rabbit anti-Erv1p antiserum was applied at a dilution of 1:50 in PTwG and incubated for 45 min at ambient temperature. The slides were then washed twice for 10 min in PTw, before the second antibody, goat anti-rabbit IgG, was added (dilution 1:500) in PTwG; the mixture was incubated for a further 45 min. Bound alkaline phosphatase activity was monitored by adding the substrate (0.75 mg ml⁻¹ Nitroblue Tetrazolium and 0.38 mg ml⁻¹ 5-bromo-4-chloro-3-indolyl phosphate in alkP reaction buffer: 100 mmol l⁻¹ Tris-HCl, pH 9.5, 100 mmol l⁻¹ NaCl, 5 mmol l⁻¹ MgCl₂). After development of the colour reaction (5–10 min), the slides were washed in phosphate-buffered saline and dehydrated. Coverslips were mounted with DePex. For immunofluorescence, Cy3 and Cy5 secondary antibodies were used, and the coverslips were mounted with Mowiol. Images were collected with a confocal laser scanning microscope and digitally processed.

Results

Expression analysis of Alrp in rat

A first systematic investigation of the distribution of Alrp in the rat was performed with total protein extracts from a number of tissues and blood samples. Separation of these samples on protein gels was carried out under reducing and non-reducing conditions to include the investigation of dimer formation in this analysis. After transfer to nitrocellulose membranes, the separated proteins were probed with a polyclonal antibody specific for the conserved carboxy-terminal domain of mammalian Alrp (Lange et al., 2001). The results of these immunological studies are shown in Fig. 1. The expression of at least three different forms of Alrp was observed: the full-length 23 kDa form and fragments of 21 kDa and 15 kDa. Under non-reducing conditions, all three forms of Alrp exist as dimers. S, spleen; K, kidney; H, heart, L, lung; C, cerebellum; B, brain; Li, liver; F, fat tissue; M, muscle, T, testis; LB, liver blood; vB, venous blood; aB, arterial blood. DTT, dithiothreitol.

Fig. 1. Expression of Alrp in rat organs and blood samples. Samples (20 μg) of total protein extract were separated in non-reducing 4 % to 12 % gradient gels. The respective western blot was probed with an antibody specific for mammalian Alrp. Proteins were analysed with (+) and without (−) reducing agent (20 mmol l⁻¹ dithiothreitol) in the sample buffer. The molecular masses (MW) of marker proteins are listed in kDa. Three forms of Alrp with molecular masses of 23, 21 and 15 kDa were identified. Under non-reducing conditions, all three forms of Alrp exist as dimers. S, spleen; K, kidney; H, heart, L, lung; C, cerebellum; B, brain; Li, liver; F, fat tissue; M, muscle, T, testis; LB, liver blood; vB, venous blood; aB, arterial blood. DTT, dithiothreitol.

Comparison of testicular Alrp expression with those of actin, mitochondrial CoxVb and cytochrome c

Western blots with selected samples from the probes shown in Fig. 1 were successively probed with four different antibodies, as listed in Fig. 2. Again, the antibody against Alrp identified up to three different forms of this protein. Actin served as an internal control for protein concentrations. The smaller amount of actin in some of the samples corresponds with the reduced presence of cytoskeleton in tissues such as the spleen, lung or blood. The mitochondrial proteins CoxVb
1982 M. Klissenbauer and others

Fig. 2. Comparison of rat Alrp expression with that of actin, mitochondrial subunit Vb of cytochrome oxidase (CoxVb) and mitochondrial cytochrome c (Cyt c). Samples (20 μg) of protein were separated in a non-reducing 4% to 12% gradient gel. The respective western blot was probed with antibodies specific for mammalian Alrp, actin, CoxVb and Cyt c as indicated. Proteins were analysed with (+) and without (−) reducing agent (20 mmol l−1 dithiothreitol) in the sample buffer. The sample from muscle demonstrates dimer formation. The molecular masses (MW) of marker proteins are listed in kDa. Li, liver; K, kidney; H, heart; M, muscle, S, spleen; L, lung; B, brain; F, fatty tissue; LB, liver blood; vB, venous blood; aB, arterial blood; T, testis. DTT, dithiothreitol.

Fig. 3. Expression of Alrp in mice from postnatal days 13–29. Testis samples from two animals were prepared for each listed day. Samples (20 μg) of protein were separated in a 4% to 12% gradient gel. The respective western blots were probed with antibodies specific for mammalian Alrp, mouse cyritestin and actin. Alrp is detectable at the earliest stages of spermatogenesis examined. The largest amounts of Alrp are observed at days 13, 19, 25 and 29. In contrast, cyritestin is expressed during the later stages of spermatogenesis. The molecular masses (MW) of marker proteins and of cyritestin (110 kDa) and actin (42 kDa) are listed.

and cytochrome c are markers for the expression status of proteins from the respiratory chain. Comparison of the expression of CoxVb and cytochrome c with that of Alrp demonstrates that there is no correlation between the expression levels of proteins for the respiratory chain and that for Alrp.

Testicular expression of Alrp in postnatal mice from days 13–29

Male mice from the same day of birth were grown for 13 days. Pairs of animals were then removed from the population and used for the preparation of whole testis samples. Identical samples from total protein extracts were used for the immunological studies. The testis-specific marker protein cyritestin (Heinlein et al., 1994; Lemaire et al., 1994; Linder et al., 1995) was included in the analysis together with the actin control. Cyritestin accumulates during the late stages of spermat differentiation (Forsbach and Heinlein, 1998) and is therefore present at the highest levels around post-natal day 23. In contrast, Alrp is present at high levels from the very early days of spermatogenesis. High levels of Alrp were also detected on post-natal days 19, 25 and 29 (Fig. 3). This demonstrates that peaks of Alrp synthesis in the testis are observed approximately every 6–7 days after birth. This cycle of expression coincides with the generation of spermatogonia and spermatocytes. These experiments were repeated three times with different sets of animals. The results were essentially the same.

Analysis of Alrp expression in gradient-separated testis cells

Dissociated testes cells from eight mice were applied to a BSA gradient. Fractions were collected, and samples were stained and inspected microscopically. Fractions containing predominantly the same type of cell were pooled. Samples of these cells were used to prepare total protein extracts for the immunological studies shown in Fig. 4. The distribution, differentiation-dependent expression and processing of the germ-cell-specific marker cyritestin served as an internal control (Forsbach and Heinlein, 1998). Cyritestin is synthesized as a 110 kDa precursor (Forsbach and Heinlein, 1998) and integrated into the membrane of the acrosome (Linder et al., 1995). The intra-acrosomal half of the transmembrane protein is then released, and a 55 kDa fragment is retained in the membrane as the functional protein. The 55 kDa fragment therefore accumulates during the last stages
Mitochondrial sulphydryl oxidase Erv1p/Alrp during spermatogenesis

of sperm cell maturation. The expression profile for Alrp was different from that of cyristestin: Alrp was detected in fractions associated with cells characteristic of the early stages of sperm cell development. The largest amount of Alrp was found in fractions 51–56, which contain type B spermatogonia. In contrast, mitochondrial CoxVb is present in comparable amounts in nearly all samples. Fractionation experiments were repeated three times with testis preparations from different animals. The expression analysis for Alrp gave comparable results in all these experiments.

Immunological detection of Alrp in tissue sections

Immunocytochemistry was used to corroborate the results obtained in cell separation experiments. Paraffin-embedded tissue sections were probed with anti-Alrp antiserum and chromogenic or fluorescent secondary antibodies. The signals generated provided additional evidence that Alrp is expressed in spermatogonia (Figs 5, 6).

Discussion

Here, we report the first characterization of full-length Alrp sulphhydryl oxidase as a new enzyme the expression of which is regulated during spermatogenesis. The greatest amounts of this protein are observed in spermatogonia and early spermatocytes. Expression levels of Alrp do not correlate with the synthesis of marker proteins for a functional respiratory chain. This indicates the importance of the mitochondrial form of the sulphhydryl oxidase Alrp for other functions besides oxidative phosphorylation during sperm cell differentiation. In this respect, it is of special interest that the most recent studies identify full-length Alrp as a component of the mitochondrial intermembrane space with an essential function in the assembly of cytosolic Fe/S cluster proteins (Lange et al., 2001). This opens interesting new lines of investigation for the analysis of sperm development.

Protein analysis of numerous rat and mouse tissues

![Fig. 4. Gradient separation of testis cells and expression analysis for Alrp, cyristestin and mitochondrial subunit Vb of cytochrome oxidase (CoxVb). Samples (20 μg) of protein were separated in 4% to 12% gradient gels, and western blots were probed with the listed antibodies. Expression levels of Alrp are clearly distinct from that of testis-specific cyristestin. Alrp is found predominantly in spermatogonia and early spermatocytes. The 110 kDa form of cyristestin accumulates in the later stages of spermatogenesis, with the typical processing into the 55 kDa fragment during the final maturation steps of sperm cells. In contrast, mitochondrial CoxVb is present in comparable amounts in nearly all samples. T, total testis extract; numbers 3–80 represent the first number of the pooled fractions collected from the gradient. Pooled fractions contained predominantly one type of differentiating sperm cell as listed: 3, 3–14/pachytene spermatocytes; 15, 15–24/type A spermatogonia; 25, 25–35/leptotene–zygotene spermatocytes; 36, 36–50/Sertoli cells; 51, 51–56/type B spermatogonia; 57, 57–69/secondary spermatocytes; 70, 71–79/early spermatids; 80, 81–91/late spermatids. St, isolated spermatids from seminiferous tubules; Sp, mature sperm cells from epididymis.](image-url)

![Fig. 5. Alrp immunodetection with alkaline-phosphatase-conjugated secondary antibody. (a) Sagittal section through seminiferous tubule with immunopositive (brown colour) spermatogonia along the basal lamina. (b) Lateral section through the spermatogonial layer of the seminiferous epithelium. Scale bar, 50 μm.](image-url)
demonstrated that Alrp is a ubiquitous protein. In accordance with the finding that, under normal conditions, Alrp is not secreted from cells, blood samples do not contain Alrp. The very small amount of Alrp that is present in blood samples taken directly from the liver had probably been released from damaged hepatocytes. The concentrations of Alrp vary among tissues. Our important new findings are the high level of Alrp in the brain and cerebellum and the identification of three different forms of Alrp. Previous studies indicated that different forms of Alrp may be associated with different localizations and functions (Gandhi et al., 1999; Giorda et al., 1996; Hofhaus et al., 1999). During liver regeneration, there is specific accumulation of a cytosolic 15 kDa Alrp fragment (Giorda et al., 1996; Hagiya et al., 1994) that may be associated with its function as a secondary growth factor (Francavilla et al., 1994; Gandhi et al., 1999; Wang et al., 1999).

Our data characterize full-length Alrp as a testicular sulphydryl oxidase distinct from the Q6-related FAD-dependent rat seminal vesicle sulphydryl oxidase. The rat Q6 enzyme is a secretory protein found preferentially in epididymis and seminal vesicles (Benayoun et al., 2001). In contrast, Alrp is associated with spermatogonia and early spermatocytes, as verified by the analysis of testis from postnatal mice of different ages. The distribution of Alrp in gradient fractions of separated testis cells supports this finding.

Current research suggests that sulphydryl oxidases and other redox proteins have a broader than expected role in the regulation of cell growth and differentiation (Eickhoff et al., 2001; Lisowsky, 2001). In addition to a defined enzymatic function in modifying amino acid residues in target proteins, these enzymes also act like cytokines or growth factors and occur at a variety of subcellular locations (Benayoun et al., 2001; Coppock et al., 1998; Eickhoff et al., 2001; Hoober and Thorpe, 1999; Lee et al., 2000). One recent new example is the macrophage migration inhibitory factor MIF. This redox protein was first described as a classical T-cell cytokine (Bloom and Bennett, 1966; David, 1966). MIF has since been identified as a new secretory protein of rat epididymis that is transferred to spermatozoa and is localized in the outer dense fibres (Eickhoff et al., 2001). Another important example of the synthesis of two isoforms from a nuclear gene during mouse spermatogenesis has also been described: the alternative splicing products from the same mouse gene encode mitochondrial transcription factor A and a testis-specific nuclear HMG box protein whose precise cellular function is still unknown (Larsson et al., 1996).

According to current data, there are two possible functions for Alrp in the mitochondrial intermembrane space of spermatogonia and spermatocytes. First, as a sulphhydril oxidase, Alrp could be responsible for the introduction of specific disulphide bridges into integral mitochondrial membrane proteins, and changes in the level and activity of Alrp would result in morphological changes in mitochondria. This would make sense because mitochondria, in particular, exhibit a highly complicated change in their structure during spermatogenesis (Meinhardt et al., 1999). In addition, for the homologous Erv1p from yeast, we have shown previously that reduced levels of mitochondrial Erv1p cause dramatic changes in the morphology of mitochondria (Becher et al., 1999).

Second, Alrp could play a role in the biosynthesis of a product important for spermatogenesis. Our latest data demonstrate that full-length Alrp is essential for the biogenesis of cytosolic Fe/S proteins. This could indicate a specific demand for particular Fe/S-cluster-containing proteins during sperm development. Recent studies demonstrate that the mitochondria of all eukaryotes perform a central task in the biogenesis of cellular Fe/S proteins (for reviews, see Craig et al., 1999; Lill et al., 1999; Lill and Kispal, 2000). They harbour...
Mitochondrial sulphhydryl oxidase Ervlp1/Alrp during spermatogenesis 1985

1986 M. Klissenbauer and others

