SHORT COMMUNICATION

INHIBITION OF A CHLORIDE PUMP BY ACETAZOLAMIDE IN THE INTESTINE OF APLYSIA CALIFORNICA

By GEORGE A. GERENCSE

Department of Physiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA

The isolated intestine of Aplysia californica, bathed in a substrate-free NaCl seawater bathing medium, generates a spontaneous transepithelial potential difference such that the serosal surface is negative relative to the mucosal surface (Gerencser, 1978a). The short-circuit current (Isc) is accounted for by active absorptive mechanisms for both Na⁺ and Cl⁻, the Cl⁻ transport mechanism being more vigorous than that for Na⁺ (Gerencser, 1978a). However, Cl⁻ transport appeared to be independent of Na⁺ transport, for the Isc measured in an Na⁺-free seawater bathing medium was shown to be identical to a net active absorptive flux of Cl⁻ (Gerencser, 1984a). It was hypothesized that active Cl⁻ absorption in Aplysia enterocytes was mediated by a primary active transport process, because it had been demonstrated that the intracellular Cl⁻ electrochemical potential was less than that measured in the extracellular medium (Gerencser & White, 1980), even in the absence of extracellular Na⁺ (Gerencser, 1983). Lending strength to this hypothesis, Gerencser & Lee (1983, 1985a) demonstrated the existence of a Cl⁻-stimulated ATPase activity in Aplysia enterocyte plasma membranes, suggesting a cause-and-effect relationship between ATPase activity and Cl⁻ transport. The ATPase activity stimulated by Cl⁻ was strongly inhibited by acetazolamide. In addition, Gerencser (1984b) and Gerencser & Lee (1985b) have demonstrated an ATP-dependent Cl⁻ uptake in Aplysia inside-out enterocyte plasma membrane vesicles (EPMV). Therefore, the present study was undertaken to assess the effect of acetazolamide on the ATP-driven Cl⁻ uptake mechanism in EPMV.

Seahares (Aplysia californica) were obtained from Marins Inc. (Westchester, CA) and were maintained at 25°C in circulating filtered seawater. Adult Aplysia (600–1000 g) were used in these experiments. The plasma membrane vesicles were prepared from Aplysia intestinal enterocytes by homogenization and differential and discontinuous sucrose density-gradient centrifugation techniques as described previously (Gerencser & Lee, 1985a). Vesicle transport experiments were also performed as previously described (Gerencser & Lee, 1985b).

The transmembrane electrical potential (Δψ) was estimated from the distribution of the lipophilic cation triphenylmethylphosphonium (TPMP⁺) between the

Key words: intestine, active chloride transport.
extra- and intravesicular space by ultrafiltration as described above and by a double-
labelling method as described by Lee & Pritchard (1983). Non-specific binding
of TPMP⁺ to the vesicular membranes (Goldinger, Duffey & Hong, 1983) was
assessed by using non-ionic media in the membrane preparative, reaction mixture
and ultrafiltration stages of the TPMP⁺ electrical potential difference assay. When
converted into a ΔΨ, 31.1 mV was then subtracted from the total to give the ATP-
dependent ΔΨ.

As demonstrated in the present study (Table 1), the addition of ATP, in the
presence of Mg²⁺, to EPMV of Aplysia elicited a rapid Cl⁻ uptake significantly above
that of control. This difference in Cl⁻ uptake is the ATP-dependent portion of the
total Cl⁻ uptake into the EPMV and it is inhibited 50.3 ± 6.1% by 1 mmol l⁻¹
acetazolamide. Similarly, in the same preparation of EPMV, the ΔΨ was inhibited by
acetazolamide 90.6 ± 2.1%, which is similar quantitatively to the effect of
1 mmol l⁻¹ acetazolamide on Cl⁻-stimulated ATPase activity in the same preparation
(Gerencser & Lee, 1985a). The above values are means ± s.e. for 9–12 different
experiments (36–42 animals).

The present finding (Table 1) that acetazolamide inhibited the ATP-dependent
Cl⁻ uptake and intravesicular negative potential (ΔΨ) in Aplysia EPMV is
consistent with the following previous findings: (1) acetazolamide inhibition of active
Cl⁻ absorption and Iₑ in in vitro Aplysia intestine (Gerencser, 1984a) and
(2) acetazolamide inhibition of Cl⁻-stimulated ATPase activity in Aplysia EPMV
(Gerencser & Lee, 1985a). Although acetazolamide, at low concentrations, has been
shown to be a specific inhibitor of carbonic anhydrase (Maren, 1977), it has also been
demonstrated to be a good Cl⁻ transport inhibitor (White, 1980). Thus the data
further strengthen the idea that the Cl⁻-stimulated ATPase, which is inhibited by
acetazolamide, may be involved in Cl⁻ transport across the Aplysia intestine.

Table 1. Effect of acetazolamide on ATP-dependent Cl⁻ transport and ΔΨ

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Cl⁻ transport (nmol mg⁻¹ protein)</th>
<th>Inhibition (%)</th>
<th>ΔΨ (mV)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None, +ATP</td>
<td>106.7 ± 10.3</td>
<td>—</td>
<td>34.9 ± 2.5</td>
<td>—</td>
</tr>
<tr>
<td>Acetazolamide</td>
<td>78.2 ± 6.5</td>
<td>50.3 ± 16.1</td>
<td>3.3 ± 0.6</td>
<td>90.6 ± 2.1</td>
</tr>
<tr>
<td>None, −ATP</td>
<td>50.0 ± 9.2</td>
<td>—</td>
<td>31.1 ± 5.3*</td>
<td>—</td>
</tr>
<tr>
<td>Acetazolamide</td>
<td>48.9 ± 2.3</td>
<td>2.2 ± 6.4</td>
<td>32.8 ± 6.2*</td>
<td>−5.4 ± 5.8</td>
</tr>
</tbody>
</table>

Acetazolamide (1 mmol l⁻¹) was preincubated with membrane vesicles in the reaction mixture (50 μl containing 10 mmol l⁻¹ Tris/Hepes, pH 7.8, 250 mmol l⁻¹ sucrose, 3 mmol l⁻¹ MgSO₄ and 25 mmol l⁻¹ choline chloride) for 10 min at 25°C. ATP-independent Cl⁻ uptake at 15 s was determined to be 50.0 nmol mg⁻¹ protein. This value was used in the final computation of 'Inhibition (%)'.

Non-specific bound TPMP⁺ to membrane vesicles was accounted for in the final computation of ΔΨ in the upper part of the table.

ΔΨ refers to non-specific vesicle-bound triphenylmethylphosphonium (TPMP⁺) and the effect of acetazolamide on this component (lower part of the table, ΔΨ column).

Values are means ± s.e. for 9–12 different experiments (36–42 animals).
Additionally, the finding that ATP, in the presence of Cl-, can stimulate \(\Delta \psi \) (increase in intravesicular negativity), as seen in Table 1, also suggests that the mechanism responsible for this phenomenon is electrogenic.

I would like to acknowledge the excellent technical assistance of C. Burgin and F. Robbins. This investigation was supported by DSR Grant no. 122101010.

REFERENCES